Exploiting Genetic Variability of Root Morphology as a Lever to Improve Nitrogen Use Efficiency in Oilseed Rape

  • Julien Louvieaux
  • Hugues De Gernier
  • Christian HermansEmail author


Nitrogen (N) is the quantitatively most important nutrient in cropping systems. The use of nitrate as a mineral fertilizer is highly energy-intensive and causes greenhouse gas emission and groundwater pollution. Therefore, the need to reduce N-fertilizer input is pressing. In order to compensate that reduction, new crop genotypes must be sought with improved nitrogen use efficiency (NUE). While research has been mainly conducted on N assimilation and remobilization processes in aerial organs, breeders often consider the root organ as a black box. This chapter envisages an era of modern root biology discoveries to improve NUE. Yet, optimizing the degree of root branching for exploring a large soil volume may contribute to higher N uptake. Our focus is on winter oilseed rape, a crop that releases an important N balance surplus after harvest. We provide an example of high-throughput hydroponic screen of root morphology with a diversity set grown at two contrasting N supplies. Key observations are the considerable degree of variability in the root morphological traits among genotypes and the absence of trade-off between profuse root branching and shoot biomass production. Furthermore, root morphological traits observed at a young developmental stage in laboratory setups positively correlate with seed N and protein concentrations measured in the field.


Arabidopsis Field trial Hydroponics Natural variation Nitrogen Mineral nutrition Oilseed rape Root morphology 



We thank László Kupcsik for setting up the pouch-and-wick system with Julien.Louvieaux

Sources of funding

This work is supported by an incentive research grant from the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and by Wiener Anspach Fondation at ULB. Christian.Hermans. is an F.R.S.-FNRS Research Associate


  1. Adu M, Chatot A, Wiesel L, Bennett M, Broadley M, White P, Dupuy X (2014) A scanner system for high-resolution quantification in root growth dynamics of Brassica rapa genotypes. J Exp Bot 65:2039–2048PubMedPubMedCentralCrossRefGoogle Scholar
  2. Araya T, von Wirén N, Takahashi H (2014) CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants. Plant Signal Behav 9:e29302PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barraclough P (1989) Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant Soil 119:59–70CrossRefGoogle Scholar
  4. Barraclough P, Howart J, Jones J, Lopez-Bellido R, Parmar S, Shepherd C, Hawkesford M (2010) Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur J Agron 33:1–11CrossRefGoogle Scholar
  5. Berry PM, Spink J, Foulkes MJ, White PJ (2010) The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.). Field Crops Res 119:365–373CrossRefGoogle Scholar
  6. Birnbaum KD (2016) How many ways are there to make a root? Curr Opin Plant Biol 34:61–67PubMedCrossRefGoogle Scholar
  7. Bouchet A-S, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribière N, Orsel M, Grezes-Besset B, Renard M, Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199:183–205CrossRefGoogle Scholar
  8. Bouchet A-S, Laperche A, Bissuel-Belaygue C, Snowdon R, Nesi N, Stahl A (2016a) Nitrogen use efficiency in rapeseed. A review. Agron Sustain Dev 36:38CrossRefGoogle Scholar
  9. Bouchet A-S, Laperche A, Bissuel-Belaygue C, Baron C, Morice J, Rousseau-Gueutin M, Dheu JE, George P, Pinochet X, Foubert T, Maes O, Dugué D, Guinot F, Nesi N (2016b) Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed. BMC Genet 17:131PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zažímalová E, Hoyerová K, Nacry P, Gojon A (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants 1:15015Google Scholar
  11. Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, Nacry P (2016) Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol 172:1237–1248PubMedPubMedCentralGoogle Scholar
  12. Burkart MR, Stoner JD (2007) Nitrate in aquifers beneath agricultural systems. Water Sci Technol 56:59–69PubMedCrossRefGoogle Scholar
  13. Burow M, Halkier BA (2017) How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study. Curr Opin Plant Biol 38:142–147PubMedCrossRefGoogle Scholar
  14. Cerovic ZG, Ghozlen NB, Milhade C, Obert M, Debuisson S, Le Moigne M (2015) Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. J Agri Food Chem 63:3669–3680CrossRefGoogle Scholar
  15. Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu G, Fan X (2016) Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J 14:1705–1715PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X (2017) pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J. Scholar
  18. De Pessemier J, Chardon F, Juraniec M, Delaplace P, Hermans C (2013) Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. Mech Dev 130:45–53PubMedCrossRefGoogle Scholar
  19. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607CrossRefGoogle Scholar
  20. Eisenbrand G, Gelbke HP (2016) Assessing the potential impact on the thyroid axis of environmentally relevant food constituents/contaminants in humans. Arch Toxic 90:1841–1857CrossRefGoogle Scholar
  21. Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113:7118–7123PubMedCrossRefGoogle Scholar
  22. Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68:2463–2475PubMedCrossRefGoogle Scholar
  23. Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66:245–256PubMedCrossRefGoogle Scholar
  24. Forde BG (2014) Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol 21:30–36PubMedCrossRefGoogle Scholar
  25. Fu Y, Yi H, Bao J, Gong J (2015) LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato. FEBS Lett 589:1072–1079PubMedCrossRefGoogle Scholar
  26. Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG (2012) Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development. Plant Cell Physiol 53:1003–1016PubMedCrossRefGoogle Scholar
  27. Garnett T, Conn V, Kaiser B (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell Environ 32:1272–1283CrossRefGoogle Scholar
  28. Gehringer A, Snowdon R, Spiller T, Basunanda P, Friedt W (2007) New oilseed rape (Brassica napus) hybrids with high levels of heterosis for seed yield under nutrient-poor conditions. Breed Sci 57:315–320CrossRefGoogle Scholar
  29. Gent L, Forde BG (2017a) How do plants sense their nitrogen status? J Exp Bot 68:2531–2539PubMedCrossRefGoogle Scholar
  30. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808PubMedCrossRefGoogle Scholar
  31. Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:1611–1679CrossRefGoogle Scholar
  32. Gu J, Chao H, Wang H, Li Y, Li D, Xiang J, Gan J, Lu G, Zhang X, Long Y, Li M (2017) Identification of the relationship between oil body morphology and oil content by microstructure comparison combining with QTL analysis in Brassica napus. Front Plant Sci 7:1989PubMedPubMedCentralCrossRefGoogle Scholar
  33. Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Ann Rev Genet 49:269–289PubMedCrossRefGoogle Scholar
  34. Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C (2017) Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot 68:2513–2529PubMedGoogle Scholar
  35. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do deficiencies of essential mineral elements alter biomass allocation? Trends Plant Sci 11:610–617PubMedCrossRefGoogle Scholar
  36. Hermans C, Porco S, Verbruggen N, Bush D (2010a) Chitinase-like protein CTL1 plays a role in the root system plasticity in response to multiple environmental signals. Plant Physiol 152:904–917PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hermans C, Vuylsteke M, Coppens F, Craciun A, Inzé D, Verbruggen N (2010b) The early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock genes expression in roots and the triggering of ABA-responsive genes. New Phytol 187:119–131PubMedCrossRefGoogle Scholar
  38. Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838PubMedCrossRefGoogle Scholar
  40. Kamh M, Wiesler F, Ulas A, Horst WJ (2005) Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J Plant Nutr Soil Sci 168:130–137CrossRefGoogle Scholar
  41. Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509PubMedCrossRefGoogle Scholar
  42. Kessel B, Schierholt A, Becker H (2012) Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (Brassica napus L.). Crop Sci 52:2546–2554CrossRefGoogle Scholar
  43. Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture. Plant Cell Physiol 57:707–714PubMedPubMedCentralCrossRefGoogle Scholar
  44. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937PubMedCrossRefGoogle Scholar
  45. Laskowski M, Ten Tusscher KH (2017). Periodic lateral root priming: what makes it tick? The Plant Cell 29:432–444Google Scholar
  46. Lavagi I, Estelle M, Weckwerth W, Beynon J, Bastow RM (2012) From bench to bountiful harvests: a road map for the next decade of Arabidopsis research. Plant Cell 24:2240–2247PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458PubMedCrossRefGoogle Scholar
  48. Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le Deunff E (2008) Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape. Plant Physiol 146:1928–1940PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lemaire L, Deleu C, Le Deunff E (2013) Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. J Exp Bot 64:2725–2737PubMedCrossRefGoogle Scholar
  50. Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9PubMedCrossRefGoogle Scholar
  51. Li P, Chen F, Cai H, Liu J, Pan Q, Liu Z, Gu R, Mi G, Zhang F, Yuan L (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66:3175–3188PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li X, Zeng R, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202PubMedCrossRefGoogle Scholar
  53. Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot 68:2477–2488PubMedCrossRefGoogle Scholar
  54. Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA 102:13693–13698PubMedCrossRefGoogle Scholar
  55. Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013PubMedPubMedCentralCrossRefGoogle Scholar
  56. Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder AJ, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci USA 107:8035–8040PubMedCrossRefGoogle Scholar
  57. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287PubMedCrossRefGoogle Scholar
  58. Gent L, Forde BG (2017b) How do plants sense their nitrogen status? J Exp Bot 68:2531–2539PubMedCrossRefGoogle Scholar
  59. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lynch J (2007) Roots of the second green revolution. Aust J Bot 55:493–512CrossRefGoogle Scholar
  61. Lynch JP, Brown KM (2012) New roots for agriculture: exploiting the root phenome. Philos Trans R Soc Lond B Biol Sci 367:1598–1604PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lynch J (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357PubMedPubMedCentralCrossRefGoogle Scholar
  63. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  64. Marschner H (2012) In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, ElsevierGoogle Scholar
  65. McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025PubMedCrossRefGoogle Scholar
  66. Miersch S, Gertz A, Breuer F, Schierholt A, Becker HC (2016) Influence of the semi-dwarf growth type on nitrogen use efficiency in winter oilseed rape. Crop Sci 56:2952–2961CrossRefGoogle Scholar
  67. Moll R, Kamprath E, Jackson W (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564CrossRefGoogle Scholar
  68. Moore FC, Lobell DB (2015) The fingerprint of climate trends on European crop yields. Proc Natl Acad Sci USA 112:2670–2675PubMedCrossRefGoogle Scholar
  69. Mounier E, Pervent M, Ljung K, Gojon A, Nacry P (2014) Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant, Cell Environ 37:162–174CrossRefGoogle Scholar
  70. Muñoz-Romero V, Benítez-Vega J, López-Bellido L, López-Bellido RJ (2010) Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur J Agron 33:182–187CrossRefGoogle Scholar
  71. Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating ressource. Plant Soil 370:1–29CrossRefGoogle Scholar
  72. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of inorganic nitrogen by plants. New Phytol 182:31–48PubMedCrossRefGoogle Scholar
  73. Noguero M, Lacombe B (2016) Transporters involved in root nitrate uptake and sensing by Arabidopsis. Front Plant Sci 7:1391PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nour-Eldin HH, Madsen SR, Engelen S, Jørgensen ME, Olsen C, Andersen JS, Seynnaeve D, Verhoye T, Fulawka R, Denolf P, Halkier BA (2017) Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nature Biotechnol 35:377–382CrossRefGoogle Scholar
  75. Nyikako J, Schierholt A, Kessel B, Becker HC (2014) Genetic variation in nitrogen uptake and utilization efficiency in a segregating DH population of winter oilseed rape. Euphytica 199:3–11CrossRefGoogle Scholar
  76. O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856PubMedCrossRefGoogle Scholar
  77. Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68–72PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pestsova E, Lichtblau D, Christian Wever C, Thomas Presterl T, Therese Bolduan T, Milena Ouzunova M, Peter Westhoff P (2016) QTL mapping of seedling root traits associated with nitrogen and water use efficiency in maize. Euphytica 3:585–602CrossRefGoogle Scholar
  79. Pierret A, Maeght J-L, Clément C, Montoroi J-P, Hartmann C, Gonkhamdee S (2016) Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Ann Bot 118:573–592CrossRefGoogle Scholar
  80. Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T (2013) RootNav: navigating images of complex root architectures. Plant Physiol 162:1802–1814PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pradhan P, Fischer G, van Velthuizen H, Reusser DE, Kropp JP (2015) Closing yield gaps: how sustainable can we be? PLoS ONE 10:e0129487PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rahman M, McClean P (2013) Genetic analysis on flowering time and root system in Brassica napus L. Crop Sci 53:141CrossRefGoogle Scholar
  83. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428PubMedPubMedCentralCrossRefGoogle Scholar
  84. Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006a) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211PubMedCrossRefGoogle Scholar
  85. Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006b) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921PubMedPubMedCentralCrossRefGoogle Scholar
  86. Richard AM, Diaz JH, Kaye AD (2014) Reexamining the risks of drinking-water nitrates on public health. The Ochsner J 14:392–398PubMedGoogle Scholar
  87. Schulte auf’m Erley G, Wijaya K-A, Ulas A, Becker H, Wiesler F, Horst WJ (2007) Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plant 130:519–531Google Scholar
  88. Schulte auf’m Erley G, Behrens T, Ulas A, Wiesler F, Horst WJ (2011) Agronomic traits contributing to nitrogen efficiency of winter oilseed rape cultivars. Field Crops Res 124:114–123Google Scholar
  89. Stahl A, Pfeifer M, Frisch M, Wittkop B, Snowdon RJ (2017) Recent genetic gains in nitrogen use efficiency in oilseed rape. Front Plant Sci 8:963PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sun C-H, Yu J-Q, Hu D-G (2017) Nitrate: a crucial signal during lateral roots development. Front Plant Sci 8:485PubMedPubMedCentralGoogle Scholar
  92. Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011PubMedCrossRefGoogle Scholar
  93. Thomas C, Graham N, Hayden R, Meacham M, Neugebauer K, Nightingale M, Dupuy L, Hammond J, White P, Broadley M (2016a) High-thoughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). Ann Bot 118:655–665PubMedCentralCrossRefPubMedGoogle Scholar
  94. Thomas CL, Alcock TD, Graham NS, Hayden R, Matterson S, Wilson L, Young SD, Dupuy LX, White PJ, Hammond JP, Danku JM, Salt DE, Sweeney A, Bancroft I, Broadley MR (2016b) Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol 16:214PubMedPubMedCentralCrossRefGoogle Scholar
  95. Topp CN, Bray AL, Ellis NA, Liu Z (2016) How can we harness quantitative genetic varation in crop root systems for agricultural improvement? J Integr Biol 58:213–225CrossRefGoogle Scholar
  96. Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713PubMedCrossRefGoogle Scholar
  97. Ulas A, Schulte auf’m Erley G, Kamh M, Wiesler F, Horst WJ (2012) Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. J Plant Nutr Soil Sci 175:489–498CrossRefGoogle Scholar
  98. Undurraga SF, Ibarra-Henríquez C, Fredes I, Álvarez JM, Gutiérrez RA (2017) Nitrate signaling and early responses in Arabidopsis roots. J Exp Bot 68:2541–2551PubMedCrossRefPubMedCentralGoogle Scholar
  99. Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–219PubMedPubMedCentralCrossRefGoogle Scholar
  100. Vermeer JE, Geldner N (2015) Lateral root initiation in Arabidopsis thaliana: a force awakens. F1000Prime Rep 7:32Google Scholar
  101. Wang R, Liu D, Crawford NM (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci USA 95:15134–15139PubMedCrossRefGoogle Scholar
  102. Wick K, Heumesser C, Schmid E (2012) Groundwater nitrate contamination: Factors and indicators. J Environ Manag 111:178–186CrossRefGoogle Scholar
  103. Wu QJ, Yang Y, Vogtmann E, Wang J, Han LH, Li HL, Xiang YB (2013) Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol 24:1079–1087PubMedCrossRefGoogle Scholar
  104. Xiao Q, De Gernier H, Kupcsik L, De Pessemier J, Dittert K, Fladung K, Verbruggen N, Hermans C (2015) Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply. Crop Pasture Sci 66:1249–1258CrossRefGoogle Scholar
  105. Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63:153–182CrossRefGoogle Scholar
  106. Yu P, Li X, White PJ, Li C (2015) A large and deep root system underlies high nitrogen-use efficiency in maize production. PLoS ONE 10:e012693Google Scholar
  107. Zhang H, Forde BG (1998) An Arabidopsis MADS Box gene that controls nutrient-induced changes in root architecture. Science 279:407–409PubMedCrossRefGoogle Scholar
  108. Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534PubMedCrossRefGoogle Scholar
  109. Zhang H, Rong H, Pilbeam D (2007) Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338PubMedCrossRefGoogle Scholar
  110. Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding G, Cai H, Graham NS, Hammond JP, King GJ, White PJ, Xu F, Broadley MR, Shi L, Meng J (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:33113PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julien Louvieaux
    • 1
    • 2
  • Hugues De Gernier
    • 1
    • 3
  • Christian Hermans
    • 1
    Email author
  1. 1.Laboratory of Plant Physiology and Molecular Genetics, Interfacultary School of BioengineersUniversité libre de BruxellesBrusselsBelgium
  2. 2.Laboratory of Applied Plant EcophysiologyHaute Ecole Provinciale de Hainaut Condorcet, Centre pour l’Agronomie et l’Agro-industrie de la Province de HainautAthBelgium
  3. 3.Center for Plant Systems BiologyVIB-UGentGhentBelgium

Personalised recommendations