Advertisement

Optical Spectroscopy and Its Applications in Inorganic Materials

  • Marcio Aurélio Pinheiro Almeida
  • Adeilton Pereira Maciel
Chapter

Abstract

Light-matter interaction is a research field under permanent investigation. Such studies have encouraged new research as well as have effectively contributed to the development of new materials for different applications. The optical properties of materials derive from interactions with electromagnetic radiation, and they include absorption, emission, diffraction, scattering, reflection, and refraction. Thus, optical measurements are crucial for the better understanding of such properties due to structural changes in the properties of these materials. Optical measurements enable interpreting the electronic transitions, estimating the band gap values through the absorption coefficient or the Kubelka-Munk function, or even conducting lattice vibration (phonons) studies. It is worth analyzing the collected data in order to obtain light-activated catalysts, as well as to develop optical devices and scintillators, among other technological equipment.

Keywords

Light-matter interaction Optical spectroscopy Inorganic materials Kubelka-Munk function Optical devices Scintillators 

Notes

Acknowledgments

We are grateful to the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) for the substantial financial support in the research projects Proc. INFRA-03965/15 and Proc. UNIVERSAL-00656/15.

References

  1. 1.
    Solé, J. G., Bausá, L. E., & Jaque, D. (2005). An introduction to the optical spectroscopy of inorganic solids. New Jersey: Wiley.CrossRefGoogle Scholar
  2. 2.
    William, J., Callister, D., & Rethwisch, D. G. (2013). Materials science and engineering: An introduction (9th ed.). New York: Wiley.Google Scholar
  3. 3.
    Housecroft, C. E., & Sharpe, A. G. (2008). Inorganic chemistry (3th ed.). London: Pearson Education.Google Scholar
  4. 4.
    Fox, M. (2007). Optical properties of solids. New York: Oxford University Press.Google Scholar
  5. 5.
    Tilley, R. J. D. (2004). Understand solids: The science of materials. New York: Willey.CrossRefGoogle Scholar
  6. 6.
    Grundmann, M. (2010). The physics of semiconductors: An introduction including nanophysics and applications (2th ed.). New York: Springer.CrossRefGoogle Scholar
  7. 7.
    Kitai, A. (2008). Luminescent materials and applications. Chichester: Wiley.CrossRefGoogle Scholar
  8. 8.
    Bergman, L., & McHale, J. L. (2012). Handbook of luminescent semiconductor materials. New York: CCR Press.Google Scholar
  9. 9.
    Gauglitz, G., & Vo-Dinh, T. (2003). Handbook of spectroscopy. Weinheim: WILEY-VCH.CrossRefGoogle Scholar
  10. 10.
    Barnes, P. Y., Early, E. A., & Parr, A. C. (1998). Spectral reflectance. Washington: NIST PUBLICATIONS.CrossRefGoogle Scholar
  11. 11.
    Torrent, J., & Barrón, V. (2008). Diffuse reflectance spectroscopy. In M.o.S.A.P.M. Methods (Ed.), (pp. 367–385). Madison: Soil Science Society of America.Google Scholar
  12. 12.
    Wood, B. J., & Strens, R. G. J. (1979). Mineralogical Magazine, 43, 509–518.CrossRefGoogle Scholar
  13. 13.
    Dzimbeg-Malcic, V., Barbaric-Mikocevic, Z., & Itric, K. (2011). Technical Gazette, 18, 117–124.Google Scholar
  14. 14.
    Morales, A. E., Mora, E. S., & Pal, U. (2007). Revista Mexicana de Física, 53, 18–22.Google Scholar
  15. 15.
    Sardela, M. (2014). Practical materials characterization. New York: Spriger.CrossRefGoogle Scholar
  16. 16.
    Koferstein, R., Jager, L., & Ebbinghaus, S. G. (2013). Solid State Ionics, 249, 1–5.CrossRefGoogle Scholar
  17. 17.
    Mehmood, M. S., Siddiqui, N., Maqbool, S. A., Baluch, M. A., Mukhtar, S. S., & Yasin, T. (2017). Optik, 144, 387–392.CrossRefGoogle Scholar
  18. 18.
    Eberl, J., & Kisch, H. (2008). Photochemical & Photobiological Sciences, 7, 1400–1406.CrossRefGoogle Scholar
  19. 19.
    Bellardita, M., Addamo, M., Di Paola, A., Palmisano, L., & Venezia, A. M. (2009). Physical Chemistry Chemical Physics, 11, 4084–4093.CrossRefGoogle Scholar
  20. 20.
    Khoshhesab, Z. M. (2012). Infrared spectroscopy – materials science, engineering and technology. Croatia: InTech.Google Scholar
  21. 21.
    Palmer, J. M. (1995). The measurement of transmission, absorption, emission, and reflection. In J. M. Palmer (Ed.), Handbook of optics (p. 25.21). New York: McGraw-Hill Professional.Google Scholar
  22. 22.
    Toft, J., & Kvalheim, O. M. (1993). Chemometrics and Intelligent Laboratory Systems, 19, 65–73.CrossRefGoogle Scholar
  23. 23.
    Gottfries, J., Depui, H., Fransson, M., Jongeneelen, M., Josefson, M., Langkilde, F. W., & Witte, D. T. (1996). Journal of Pharmaceutical and Biomedical Analysis, 14, 1495–1503.CrossRefGoogle Scholar
  24. 24.
    Nasser, H., Ozkol, E., Bek, A., & Turan, R. (2015). Optical Materials Express, 5, 932–942.CrossRefGoogle Scholar
  25. 25.
    Sampaio, P. G. V., & González, M. O. A. (2017). Renewable and Sustainable Energy Reviews, 74, 590–601.CrossRefGoogle Scholar
  26. 26.
    Gong, J. W., Sumathy, K., Qiao, Q. Q., & Zhou, Z. P. (2017). Renewable and Sustainable Energy Reviews, 68, 234–246.CrossRefGoogle Scholar
  27. 27.
    Snaith, H. J. (2010). Advanced Functional Materials, 20, 13–19.CrossRefGoogle Scholar
  28. 28.
    Zuo, C. T., Bolink, H. J., Han, H. W., Huang, J. S., Cahen, D., & Ding, L. M. (2016). Advancement of Science, 3, 1500324–1500324.Google Scholar
  29. 29.
    Alshahrie, A., Juodkazis, S., Al-Ghamdi, A. A., Hafez, M., & Bronstein, L. M. (2017). Optics and Laser Technology, 95, 29–35.CrossRefGoogle Scholar
  30. 30.
    Conibeer, G. J., & Willoughby, A. (2014). Solar cell materials: Developing technologies. UK: Wiley.CrossRefGoogle Scholar
  31. 31.
    Niv, A., Abrams, Z. R., Gharghi, M., Gladden, C., & Zhang, X. (2012). Applied Physics Letters, 100, 083901.CrossRefGoogle Scholar
  32. 32.
    Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Science, 352, 307.CrossRefGoogle Scholar
  33. 33.
    Liao, W. Q., Zhao, D. W., Yu, Y., Shrestha, N., Ghimire, K., Grice, C. R., Wang, C. L., Xiao, Y. Q., Cimaroli, A. J., Ellingson, R. J., Podraza, N. J., Zhu, K., Xiong, R. G., & Yan, Y. F. (2016). Journal of the American Chemical Society, 138, 12360–12363.CrossRefGoogle Scholar
  34. 34.
    Zhang, Z. L., Men, B. Q., Liu, Y. F., Gao, H. P., & Mao, Y. L. (2017). Nanoscale Research Letters, 12, 84.Google Scholar
  35. 35.
    Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Energy & Environmental Science, 7, 982–988.CrossRefGoogle Scholar
  36. 36.
    Renz, C. (1921). Helvetica Chimica Acta, 4, 961–968.CrossRefGoogle Scholar
  37. 37.
    Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (2013). Design of advanced photocatalytic materials for energy and environmental applications: Green energy and technology. London: Springer.CrossRefGoogle Scholar
  38. 38.
    Reddy, P. V. L., Kavitha, B., Reddy, P. A. K., & Kim, K. H. (2017). Environmental Research, 154, 296–303.CrossRefGoogle Scholar
  39. 39.
    Fujishima, A., Zhang, X. T., & Tryk, D. A. (2008). Surface Science Reports, 63, 515–582.CrossRefGoogle Scholar
  40. 40.
    Hernández-Ramírez, A., & Medina-Ramıírez, I. (2015). Photocatalytic semiconductors: Synthesis, characterization, and environmental applications. London: Springer.CrossRefGoogle Scholar
  41. 41.
    Bora, L. V., & Mewada, R. K. (2017). Renewable and Sustainable Energy Reviews, 76, 1393–1421.CrossRefGoogle Scholar
  42. 42.
    Tong, H., Ouyang, S. X., Bi, Y. P., Umezawa, N., Oshikiri, M., & Ye, J. H. (2012). Advanced Materials, 24, 229–251.CrossRefGoogle Scholar
  43. 43.
    Abe, R. (2010). Journal of Photochemistry Photobiology C-Photochemistry Reviews, 11, 179–209.CrossRefGoogle Scholar
  44. 44.
    Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (2013). Design of advanced photocatalytic materials for energy and environmental applications. London: Springer.CrossRefGoogle Scholar
  45. 45.
    Luevano-Hipolito, E., & Martinez-de la Cruz, A. (2017). Advanced Powder Technology, 28, 1511–1518.CrossRefGoogle Scholar
  46. 46.
    Shan, Z. C., Wang, Y. M., Ding, H. M., & Huang, F. Q. (2009). Journal of Molecular Catalysis A-Chemical, 302, 54–58.CrossRefGoogle Scholar
  47. 47.
    Bian, Z. F., Zhu, J., & Li, H. X. (2016). Journal of Photochemistry Photobiology C-Photochemistry Reviews, 28, 72–86.CrossRefGoogle Scholar
  48. 48.
    Cheng, H. F., Huang, B. B., & Dai, Y. (2014). Nanoscale, 6, 2009–2026.CrossRefGoogle Scholar
  49. 49.
    Amano, F., Nogami, K., & Ohtani, B. (2012). Catalysis Communications, 20, 12–16.CrossRefGoogle Scholar
  50. 50.
    Hao, Y. Y., Zhang, L. Y., Zhang, Y., Zhao, L., & Zhang, B. S. (2017). RSC Advances, 7, 26179–26184.CrossRefGoogle Scholar
  51. 51.
    Ouyang, S. X., & Ye, J. H. (2011). Journal of the American Chemical Society, 133, 7757–7763.CrossRefGoogle Scholar
  52. 52.
    Geng, Y., Zhang, P., Li, N., Sun, Z., & Alloys, J. (2015). Compounds, 651, 744–748.CrossRefGoogle Scholar
  53. 53.
    An, H., Du, Y., Wang, T., Wang, C., Hao, W., & Zhang, J. (2008). Rare Metals, 27, 243–250.CrossRefGoogle Scholar
  54. 54.
    Zhao, Z. Y., & Dai, W. W. (2014). Inorganic Chemistry, 53, 13001–13011.CrossRefGoogle Scholar
  55. 55.
    Ganose, A. M., Cuff, M., Butler, K. T., Walsh, A., & Scanlon, D. O. (2016). Chemistry of Materials, 28, 1980–1984.CrossRefGoogle Scholar
  56. 56.
    Saraf, R., Shivakumara, C., Behera, S., Nagabhushana, H., & Dhananjaya, N. (2015). RSC Advances, 5, 4109–4120.CrossRefGoogle Scholar
  57. 57.
    Liu, Y., Xu, J., Wang, L., Zhang, H., Xu, P., Duan, X., Sun, H., & Wang, S. (2017). Nanomaterials, 7, 64.CrossRefGoogle Scholar
  58. 58.
    Gu, Y.-y., Zhao, L., Yang, M.-y., Xiong, Y.-q., Wu, Z., Zhou, M.-j., Yan, J., & Cent, J. (2017). South University, 24, 754–765.CrossRefGoogle Scholar
  59. 59.
    Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., & Jiazhong, S. (2006). Solar Energy Materials & Solar Cells, 90, 1773–1787.CrossRefGoogle Scholar
  60. 60.
    Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J. C., Ho, W.-K., & Phys, J. (2003). Chemistry B, 107, 13871–13879.CrossRefGoogle Scholar
  61. 61.
    Li, F. B., & Li, X. Z. (2002). Applied Catalysis A-General, 228, 15–27.CrossRefGoogle Scholar
  62. 62.
    Ismail, A. A., & Bahnemann, D. W. (2014). Solar Energy Materials & Solar Cells, 128, 85–101.CrossRefGoogle Scholar
  63. 63.
    Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q. X., Santori, E. A., & Lewis, N. S. (2010). Chemical Reviews, 110, 6446–6473.CrossRefGoogle Scholar
  64. 64.
    Fujishima, A., & Honda, K. (1972). Nature, 238, 37-+.CrossRefGoogle Scholar
  65. 65.
    Yamashita, H., & Li, H. (2016). In H. Yamashita & H. Li (Eds.), Nanostructure science and technology (p. 544). Switzerland: Springer.Google Scholar
  66. 66.
    Jafari, T., Moharreri, E., Amin, A. S., Miao, R., Song, W. Q., & Suib, S. L. (2016). Molecules, 21, 900.CrossRefGoogle Scholar
  67. 67.
    Noureldine, D., & Takanabe, K. (2016). Catalysis Science & Technology, 6, 7656–7670.CrossRefGoogle Scholar
  68. 68.
    Tamirat, A. G., Rick, J., Dubale, A. A., Su, W. N., & Hwang, B. J. (2016). Nanoscale Horizons, 1, 243–267.CrossRefGoogle Scholar
  69. 69.
    Maeda, K. (2013). ACS Catalysis, 3, 1486–1503.CrossRefGoogle Scholar
  70. 70.
    Ong, W. J., Tan, L. L., Ng, Y. H., Yong, S. T., & Chai, S. P. (2016). Chemical Reviews, 116, 7159–7329.CrossRefGoogle Scholar
  71. 71.
    Zhu, Z., Chen, J. Y., Su, K. Y., Wu, R. J., & Taiwan Inst, J. (2016). Chemical Engineer, 60, 222–228.Google Scholar
  72. 72.
    Harris, D. C. (2010). Quantitative chemistry analysis (8th ed.). New York: W. H. Freeman.Google Scholar
  73. 73.
    Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundaments of analytical chemistry (9th ed.). Australia: BROOKS/COLE, Cengage Learning.Google Scholar
  74. 74.
    Willard, H. H., Merritt, L. L., & Dean, J. A. (1988). Instrumental methods of analysis (6th ed.). New York: Wadsworth Publishing Company.Google Scholar
  75. 75.
    Nath, U. U. (2009). Biophysical chemistry: Principle and techniques. Mumbai: Himalaya Publishing House.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcio Aurélio Pinheiro Almeida
    • 1
  • Adeilton Pereira Maciel
    • 1
  1. 1.Universidade Federal do MaranhãoSão LuisBrazil

Personalised recommendations