Chronic Kidney Disease and Hypertension

  • Pedro A. JoseEmail author
  • Van Anthony M. Villar


Hypertension can cause kidney disease and kidney disease can cause hypertension. However, hypertension may cause progressive kidney disease only in genetically susceptible individuals. The second most common cause of end-stage renal disease continues to be hypertension. Increased blood pressure participates in the pathogenesis of renal disease and the kidney is crucial in the long-term regulation of blood pressure. The development of hypertension and kidney damage is well-documented in many well-characterized animal models of hypertension. Attenuating the development and severity of hypertension prevents the development of end-organ damage. Hypertensive nephrosclerosis is a non-specific clinical diagnosis given to patients with chronic kidney disease, low-level proteinuria, and elevated blood pressure. Arterionephrosclerosis has been suggested as the clinical diagnosis of patients with chronic kidney disease and elevated blood pressure in the absence of diabetes or known genetic cause. In patients with a known genetic cause, the term glomerulosclerosis, preceded by the genetic cause, should used, for instance, APOL1-associated glomerulosclerosis, GSTM1-associated glomerulosclerosis. Increased sodium intake, inflammation, and oxidative stress are interrelated and important in the pathogenesis of hypertension and kidney disease. It is likely that hypertension and kidney disease may share the same causes.


Chronic kidney disease Hypertension Albuminuria Glomerular filtration rate Arterionephrosclerosis Glomerulosclerosis Inflammation Oxidative stress Sodium chloride intake 



This work is supported, in part, by grants from the National Institutes of Health: HL023081, HL092196, HL068686, HL068686, and DK039308.


  1. 1.
    Kopp JB. Rethinking hypertensive kidney disease: arterionephrosclerosis as a genetic, metabolic, and inflammatory disorder. Curr Opin Nephrol Hypertens. 2013;22:266–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    O'Seaghdha CM, Fox CS. Genetics of chronic kidney disease. Nephron Clin Pract. 2011;118:c55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Garrett MR, Pezzolesi MG, Korstanje R. Integrating human and rodent data to identify the genetic factors involved in chronic kidney disease. J Am Soc Nephrol. 2010;21:398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.CrossRefGoogle Scholar
  5. 5.
    KDIGO 2017. Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1–59.CrossRefGoogle Scholar
  6. 6.
    Levey AS, Inker LA, Matsushita K, Greene T, Willis K, Lewis E, et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis. 2014;64:821–35.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Chang WX, Asakawa S, Toyoki D, Nemoto Y, Morimoto C, Tamura Y, et al. Predictors and the subsequent risk of end-stage renal disease – usefulness of 30% decline in estimated GFR over 2 years. PLoS One. 2015;10:e0132927.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    U.S. Renal Data System. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2008. USRDS 2015 Annual Data Report. Scholar
  10. 10.
    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.Google Scholar
  11. 11.
    Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016;315:164–74.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Young TI. The Croonian lecture. On the functions of the heart and arteries. Phil Trans R Soc Lond. 1809;1:1–31.CrossRefGoogle Scholar
  13. 13.
    Bright R. Tabular view of the morbid appearances in 100 cases connected with albuminous urine: with observations. Guys Hosp Rep. 1836;1:380–400.Google Scholar
  14. 14.
    Volhard F, Fahr T. Die Brightsche Nierenkrankheit. Klinik, Pathologie und Atlas. Berlin: Springer; 1914.CrossRefGoogle Scholar
  15. 15.
    Heidland A, Gerabek W, Sebekova K. Franz Volhard and Theodor Fahr: achievements and controversies in their research in renal disease and hypertension. J Hum Hypertens. 2001;15:5–16.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2:2393–442.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Majid DS, Prieto MC, Navar LG. Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr Hypertens Rev. 2015;11:38–48.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ortiz PA, Garvin JL. Intrarenal transport and vasoactive substances in hypertension. Hypertension. 2001;38:621–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    LaPointe MS, Sodhi C, Sahai A, Batlle D. Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat. Kidney Int. 2002;62:157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sonalker PA, Tofovic SP, Jackson EK. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol. 2007;34:1307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Liu J, Yan Y, Liu L, Xie Z, Malhotra D, Joe B, et al. Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. J Biol Chem. 2011;286:22806–13.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Roman RJ, Kaldunski ML. Enhanced chloride reabsorption in the loop of Henle in Dahl salt-sensitive rats. Hypertension. 1991;17:1018–24.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ferrandi M, Salardi S, Parenti P, Ferrari P, Bianchi G, Braw R, et al. Na+/K+/Cl(−)-cotransporter mediated Rb+ fluxes in membrane vesicles from kidneys of normotensive and hypertensive rats. Biochim Biophys Acta. 1990;1021:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yagil Y, Mekler J, Wald H, Popovtzer MM, Ben-Ishay D. Sodium handling by the Sabra hypertension prone (SBH) and resistant (SBN) rats. Pflugers Arch. 1986;407:547–51.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Miao CY, Liu KL, Benzoni D, Sassard J. Acute pressure-natriuresis function shows early impairment in Lyon hypertensive rats. J Hypertens. 2005;23:1225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Aviv A, Hollenberg NK, Weder A. Urinary potassium excretion and sodium sensitivity in blacks. Hypertension. 2004;43:707–13.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Chiolero A, Maillard M, Nussberger J, Brunner HR, Burnier M. Proximal sodium reabsorption: an independent determinant of blood pressure response to salt. Hypertension. 2000;36:631–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Doris PA. Promoting regulatory gene variation in sodium reabsorption. Hypertension. 2008;52:623–4.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Strazzullo P, Galletti F, Barba G. Altered renal handling of sodium in human hypertension: short review of the evidence. Hypertension. 2003;41:1000–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lifton RP, Wilson FH, Choate KA, Geller DS. Salt and blood pressure: new insight from human genetic studies. Cold Spring Harb Symp Quant Biol. 2002;67:445–50.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bianchi G, Fox U, Di Francesco GF, Giovanetti AM, Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974;47:435–48.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Morgan DA, DiBona GF, Mark AL. Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension. 1990;5:436–42.CrossRefGoogle Scholar
  33. 33.
    Churchill PC, Churchill MC, Bidani AK, Kurtz TW. Kidney-specific chromosome transfer in genetic hypertension: the Dahl hypothesis revisited. Kidney Int. 2001;60:705–14.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dahl LK, Heine M, Thompson K. Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res. 1974;40:94–101.CrossRefGoogle Scholar
  35. 35.
    Frey BA, Grisk O, Bandelow N, Wussow S, Bie P, Rettig R. Sodium homeostasis in transplanted rats with a spontaneously hypertensive rat kidney. Am J Physiol Regul Integr Comp Physiol. 2000;279:R10991104.CrossRefGoogle Scholar
  36. 36.
    Calhoun DA, Zhu S, Wyss JM, Oparil S. Diurnal blood pressure variation and dietary salt in spontaneously hypertensive rats. Hypertension. 1994;24:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ely DE, Thorén P, Wiegand J, Folkow B. Sodium appetite as well as 24-h variations of fluid balance, mean arterial pressure and heart rate in spontaneously hypertensive (SHR) and normotensive (WKY) rats, when on various sodium diets. Acta Physiol Scand. 1987;129:81–92.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sander S, Rettig R, Ehrig B. Role of the native kidney in experimental post transplantation hypertension. Pflugers Arch. 1996;431:971–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Grisk O, Frey BAJ, Uber A, Rettig R. Sympathetic activity in early renal posttransplantation hypertension in rats. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1737–44.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Grisk O, Rose HJ, Lorenz G, Rettig R. Sympathetic renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol. 2002;283:R441–50.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Crowley SD, Coffman TM. In hypertension, the kidney breaks your heart. Curr Cardiol Rep. 2008;10:470–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A. 2006;103:17985–90.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Asico L, Zhang X, Jiang J, Cabrera D, Escano CS, Sibley DR, et al. Lack of renal dopamine D5 receptors promotes hypertension. J Am Soc Nephrol. 2011;22:82–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Curtis JJ, Luke RG, Dustan HP, Kashgarian M, Whelchel JD, Jones P, et al. Remission of essential hypertension after renal transplantation. N Engl J Med. 1983;309:1009–15.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Guidi E, Menghetti D, Milani S, Montagnino G, Palazzi P, Bianchi G. Hypertension may be transplanted with the kidney in humans: a long-term historical prospective follow-up of recipients grafted with kidneys coming from donors with or without hypertension in their families. J Am Soc Nephrol. 1996;7:1131–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Vavrinec P, Henning RH, Goris M, Landheer SW, Buikema H, van Dokkum RP. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat. J Hypertens. 2013;31:1637–45.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Vettoretti S, Ochodnicky P, Buikema H, Henning RH, Kluppel CA, de Zeeuw D, et al. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats. J Hypertens. 2006;24:2215–23.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106:3037–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol. 2011;1:971–93.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Osborn JW, Fink GD, Kuroki MT. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep. 2011;13:221–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    DiBona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61:556–60.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Young CN, Davisson RL. In vivo assessment of neurocardiovascular regulation in the mouse: principles, progress, and prospects. Am J Physiol Heart Circ Physiol. 2011;301:H654–62.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fernandez MM, Gonzalez D, Williams JM, Roman RJ, Nowicki S. Inhibitors of 20-hydroxyeicosatetraenoic acid (20-HETE) formation attenuate the natriuretic effect of dopamine. Eur J Pharmacol. 2012;686:97–103.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Speed JS, Fox BM, Johnston JG, Pollock DM. Endothelin and renal ion and water transport. Semin Nephrol. 2015;35:137–44.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hyndman KA, Dugas C, Arguello AM, Goodchild TT, Buckley KM, Burch M, et al. High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression. Am J Physiol Regul Integr Comp Physiol. 2016;311:R263–71.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kodavanti UP, Russell JC, Costa DL. Rat models of cardiometabolic diseases: baseline clinical chemistries, and rationale for their use in examining air pollution health effects. Inhal Toxicol. 2015;27(Suppl 1):2–13.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Watanabe Y, Yoshida M, Yamanishi K, Yamamoto H, Okuzaki D, Nojima H, et al. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the kidneys. Int J Mol Med. 2015;36:712–24.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hultström M. Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens. 2012;30:1087–91.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Eng E, Veniant M, Floege J, Fingerle J, Alpers CE, Menard J, et al. Renal proliferative and phenotypic changes in rats with two-kidney, one-clip Goldblatt hypertension. Am J Hypertens. 1994;7:177–85.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Gudbrandsen OA, Hultstrøm M, Leh S, Monica Bivol L, Vågnes Ø, Berge RK, et al. Prevention of hypertension and organ damage in 2-kidney, 1-clip rats by tetradecylthioacetic acid. Hypertension. 2006;48:460–6.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Skogstrand T, Leh S, Paliege A, Reed RK, Vikse BE, Bachmann S, et al. Arterial damage precedes the development of interstitial damage in the nonclipped kidney of two-kidney, one-clip hypertensive rats. J Hypertens. 2013;31:152–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension. 2003;41:1341–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Garofalo C, Borrelli S, Pacilio M, Minutolo R, Chiodini P, De Nicola L, et al. Hypertension and prehypertension and prediction of development of decreased estimated GFR in the general population: a meta-analysis of cohort studies. Am J Kidney Dis. 2016;67:89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Eriksen BO, Stefansson VT, Jenssen TG, Mathisen UD, Schei J, Solbu MD, et al. Blood pressure and age-related GFR decline in the general population. BMC Nephrol. 2017;18(1):77.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Eriksen BO, Stefansson VTN, Jenssen TG, Mathisen UD, Schei J, Solbu MD, et al. High ambulatory arterial stiffness index is an independent risk factor for rapid age-related glomerular filtration rate decline in the general middle-aged population. Hypertension. 2017;69:651–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Whelton PK, Klag MJ. Hypertension as a risk factor for renal disease. Review of clinical and epidemiological evidence. Hypertension. 1989;13(5 Suppl):I19–27.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369:2183–96.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Langefeld CD, Divers J, Pajewski NM, Hawfield AT, Reboussin DM, Bild DE, et al. Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial. Kidney Int. 2015;87:169–75.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Chen TK, Estrella MM, Vittinghoff E, Lin F, Gutierrez OM, Kramer H, et al. APOL1 genetic variants are not associated with longitudinal blood pressure in young black adults. Kidney Int. 2017;92(4):964–71. pii: S0085-2538(17)30231-4.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hoy WE, Kopp JB, Mott SA, Winkler CA. Absence of APOL1 risk alleles in a remote living Australian Aboriginal group with high rates of CKD, hypertension, diabetes, and cardiovascular disease. Kidney Int. 2017;91:990.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chang J, Ma JZ, Zeng Q, Cechova S, Gantz A, Nievergelt C, et al. Loss of GSTM1, a NRF2 target, is associated with accelerated progression of hypertensive kidney disease in the African American Study of Kidney Disease (AASK). Am J Physiol Renal Physiol. 2013;304:F348–55.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bodonyi-Kovacs G, Ma JZ, Chang J, Lipkowitz MS, Kopp JB, Winkler CA, et al. Combined effects of GSTM1 null allele and APOL1 renal risk alleles in CKD progression in the African American Study of Kidney Disease and Hypertension Trial. J Am Soc Nephrol. 2016;27:3140–315.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Salvador-González B, Mestre-Ferrer J, Soler-Vila M, Pascual-Benito L, Alonso-Bes E, Cunillera-Puértolas O, et al. Chronic kidney disease in hypertensive subjects ≥60 years treated in Primary Care. Nefrologia. 2017;37:406–14.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Gallibois CM, Jawa NA, Noone DG. Hypertension in pediatric patients with chronic kidney disease: management challenges. Int J Nephrol Renovasc Dis. 2017;10:205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lv J, Ehteshami P, Sarnak MJ, Tighiouart H, Jun M, Ninomiya T, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013;185:949–57.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ku E, Gassman J, Appel LJ, Smogorzewski M, Sarnak MJ, Glidden DV, et al. BP control and long-term risk of ESRD and mortality. J Am Soc Nephrol. 2017;28:671–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kovesdy CP, Lu JL, Molnar MZ, Ma JZ, Canada RB, Streja E, et al. Observational modeling of strict vs conventional blood pressure control in patients with chronic kidney disease. JAMA Intern Med. 2014;174:1442–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bansal N. Stricter systolic blood pressure control is associated with higher all-cause mortality in patients with chronic kidney disease. Evid Based Med. 2015;20:68.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–43.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Burgner A, Lewis JB. Hypertension: is it time to reconsider blood pressure guidelines? Nat Rev Nephrol. 2014;10:620–1.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    ESCAPE Trial Group, Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.CrossRefGoogle Scholar
  84. 84.
    Hsu CY. Does non-malignant hypertension cause renal insufficiency? Evidence-based perspective. Curr Opin Nephrol Hypertens. 2002;11:267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Freedman BI, Cohen AH. Hypertension-attributed nephropathy: what's in a name? Nat Rev Nephrol. 2016;12:27–36.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Meyrier A. Nephrosclerosis: a term in quest of a disease. Nephron. 2015;129:276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Nishikimi T, Koshikawa S, Ishikawa Y, Akimoto K, Inaba C, Ishimura K, et al. Inhibition of Rho-kinase attenuates nephrosclerosis and improves survival in salt-loaded spontaneously hypertensive stroke-prone rats. J Hypertens. 2007;25:1053–63.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Gonick HC, Cohen AH, Ren Q, Saldanha LF, Khalil-Manesh F, Anzalone J, et al. Effect of 2,3-dimercaptosuccinic acid on nephrosclerosis in the Dahl rat. I. Role of reactive oxygen species. Kidney Int. 1996;50:1572–81.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Liao TD, Yang XP, Liu YH, Shesely EG, Cavasin MA, Kuziel WA, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension. 2008;52:256–63.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sakata F, Ito Y, Mizuno M, Sawai A, Suzuki Y, Tomita T, et al. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. Lab Investig. 2017;97:432–46.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Amara S, Ivy MT, Myles EL, Tiriveedhi V. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. Cell Immunol. 2016;302:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yan SH, Zhao NW, Jiang WM, Wang XT, Zhang SQ, Zhu XX, et al. Hsp90β is involved in the development of high salt-diet-induced nephropathy via interaction with various signalling proteins. Hsp90β is involved in the development of high salt-diet-induced nephropathy via interaction with various signalling proteins. Open Biol. 2016;6:150159.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. 2015;125:4212–22.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Binger KJ, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015;125:4223–38.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wade B, Abais-Battad JM, Mattson DL. Role of immune cells in salt-sensitive hypertension and renal injury. Curr Opin Nephrol Hypertens. 2016;25:22–7.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Srivastava A, Singh A, Singh SS, Mishra AK. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017;52:420–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E. Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res. 2016;60:48–54.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Liu X, Wang W, Chen W, Jiang X, Zhang Y, Wang Z, et al. Regulation of blood pressure, oxidative stress and AT1R by high salt diet in mutant human dopamine D5 receptor transgenic mice. Hypertens Res. 2015;38:394–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lai EY, Luo Z, Onozato ML, Rudolph EH, Solis G, Jose PA, et al. Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass. Am J Physiol Renal Physiol. 2012;303:F64–74.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wong MM, Arcand J, Leung AA, Raj TS, Trieu K, Santos JA, et al. The science of salt: a regularly updated systematic review of salt and health outcomes (August to November 2015). J Clin Hypertens (Greenwich). 2016;18:1054–62.CrossRefGoogle Scholar
  101. 101.
    McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015;18:CD010070.Google Scholar
  102. 102.
    Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, et al. Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am J Hum Genet. 2016;99:636–46.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ahn SY, Kim S, Kim DK, Park JH, Shin SJ, Lee SH, et al. Urinary sodium excretion has positive correlation with activation of urinary renin angiotensin system and reactive oxygen species in hypertensive chronic kidney disease. J Korean Med Sci. 2014;29(Suppl 2):S123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet S, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017; pii: HYPERTENSIONAHA.117.07802.Google Scholar
  106. 106.
    Cuevas S, Villar VA, Jose PA, Armando I. Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci. 2013;14:17553–72.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Banday AA, Lokhandwala MF. Oxidative stress causes renal angiotensin II type 1 receptor upregulation, Na+/H+ exchanger 3 overstimulation, and hypertension. Hypertension. 2011;57:452–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Loperena R, Harrison DG. Oxidative stress and hypertensive diseases. Med Clin North Am. 2017;101:169–93.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Vlassara H, Torreggiani M, Post JB, Zheng F, Uribarri J, Striker GE. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int Suppl. 2009;2009:S3–S11.CrossRefGoogle Scholar
  110. 110.
    Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract. 2017;36(2):117–31.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013;99(11):759–66.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Yang BY, Qian ZM, Vaughn MG, Nelson EJ, Dharmage SC, Heinrich J, et al. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. Environ Pollut. 2017;229:696–704.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Xu X, Wang G, Chen N, Lu T, Nie S, Xu G, et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol. 2016;27(12):3739–46.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lipfert FW. Long-term associations of morbidity with air pollution: a catalogue and synthesis. J Air Waste Manag Assoc. 2018;68:12–28.CrossRefGoogle Scholar
  116. 116.
    Al Suleimani YM, Al Mahruqi AS, Al Za'abi M, Shalaby A, Ashique M, Nemmar A, et al. Effect of diesel exhaust particles on renal vascular responses in rats with chronic kidney disease. Environ Toxicol. 2017;32:541–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Renal Diseases and HypertensionThe George Washington University School of Medicine and Health SciencesWashington, DCUSA
  2. 2.Department of Medicine and Department of Pharmacology and PhysiologyThe George Washington University School of Medicine and Health SciencesWashington, DCUSA
  3. 3.Department of MedicineThe George Washington University School of Medicine and Health SciencesWashington, DCUSA

Personalised recommendations