Use of Lignocellulosic Materials in Bio-based Packaging

  • Lina Fernanda Ballesteros
  • Michele Michelin
  • António Augusto Vicente
  • José António Teixeira
  • Miguel Ângelo Cerqueira
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


This chapter presents the most recent studies on the use of lignocellulosic materials for the development of bio-based packaging materials. It is addressed the incorporation of cellulose and its derivatives, hemicellulose, and lignin in bio-based packaging, and some works where the lignocellulosic materials with few pretreatment are used as filler are also presented. Additionally, it is discussed some bio-based materials extracted from biomass, such as polysaccharides and proteins, but also the chemically synthesized polymers such as polylactic acid (PLA), or obtained through biotechnological routes such as polyhydroxyalkanoates.


  1. Aadil KR, Prajapati D, Jha H (2016) Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Packag Shelf Life 10:25–33CrossRefGoogle Scholar
  2. Abdul Khalil HPS, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohyd Polym 150:216–226CrossRefGoogle Scholar
  3. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biot. 85(6):732–743CrossRefGoogle Scholar
  4. Albert S, Mittal GS (2002) Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Res Int 35(5):445–458CrossRefGoogle Scholar
  5. Arık Kibar EA, Us F (2013) Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. J Food Eng 114(1):123–131CrossRefGoogle Scholar
  6. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014a) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym 107:16–24CrossRefGoogle Scholar
  7. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014b) PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149CrossRefGoogle Scholar
  8. Baumberger S, Lapierre C, Monties B, Lourdin D, Colonna P (1997) Preparation and properties of thermally moulded and cast lignosulfonates-starch blends. Ind Crop Prod 6(3–4):253–258CrossRefGoogle Scholar
  9. Bedane AH, Eić M, Farmahini-Farahani M, Xiao H (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membr Sci 493:46–57CrossRefGoogle Scholar
  10. Berezina N, Martelli SM (2014) Bio-based polymers and materials. In: Lin C, Luque R (eds) Renewable resources for biorefineries: RSC (Green chemistry series). Royal Society of Chemistry, London, pp 1–28Google Scholar
  11. Berthet M-A, Angellier-Coussy H, Machado D, Hilliou L, Staebler A, Vicente A, Gontard N (2015) Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind Crop Prod 69:110–122CrossRefGoogle Scholar
  12. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97(10):1979–1987CrossRefGoogle Scholar
  13. Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119(4):707–713CrossRefGoogle Scholar
  14. Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2(1):34CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohyd Polym 86(4):1549–1557CrossRefGoogle Scholar
  16. Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J. 15(3):237–248Google Scholar
  17. Bucci D, Tavares L, Sell I (2005) PHB packaging for the storage of food products. Polym Test. 24(5):564–571CrossRefGoogle Scholar
  18. Cabane E, Keplinger T, Künniger T, Merk V, Burgert I (2016) Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Sci Rep. Scholar
  19. Cavalheiro JM, Raposo RS, Almeida MCM, Cesário MT, Sevrin C, Grandfils C, Fonseca M (2012) Effect of cultivation parameters on the production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and poly (3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397CrossRefPubMedGoogle Scholar
  20. Cerqueira MA, Lima AM, Teixeira JA, Moreira RA, Vicente AA (2009) Suitability of novel galactomannans as edible coatings for tropical fruits. J Food Eng 94(3):372–378CrossRefGoogle Scholar
  21. Chen P, Zhang L, Peng S, Liao B (2006) Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J Appl Polym Sci 101(1):334–341CrossRefGoogle Scholar
  22. Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602CrossRefGoogle Scholar
  23. Corsello FA, Bolla PA, Anbinder PS, Serradell MA, Amalvy JI, Peruzzo PJ (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohyd Polym 156:452–459CrossRefGoogle Scholar
  24. Costa MJ, Cerqueira MA, Ruiz HA, Fougnies C, Richel A, Vicente AA, Teixeira JA, Aguedo M (2015) Use of wheat bran arabinoxylans in chitosan-based films: effect on physicochemical properties. Ind Crop Prod 66:305–311CrossRefGoogle Scholar
  25. Crouvisier-Urion K, Bodart PR, Winckler P, Raya J, Gougeon RD, Cayot P, Domenek S, Debeaufort F, Karbowiak T (2016) Biobased composite films from chitosan and lignin: antioxidant activity related to structure and moisture. ACS Sustain Chem Eng 4(12):6371–6381CrossRefGoogle Scholar
  26. Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74(1):131–142CrossRefPubMedGoogle Scholar
  27. Da Cruz Pradella JG, Jenczak JL, Delgado CR, Taciro MK (2012) Carbon source pulsed feeding to attain high yield and high productivity in poly (3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol Lett 34(6):1003–1007CrossRefGoogle Scholar
  28. Dang KTH, Singh Z, Swinny EE (2008) Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. J Agric Food Chem 56(4):1361–1370CrossRefPubMedGoogle Scholar
  29. Deng S, Huang R, Zhou M, Chen F, Fu Q (2016) Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohyd Polym 154:129–138CrossRefGoogle Scholar
  30. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701CrossRefGoogle Scholar
  31. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRefPubMedGoogle Scholar
  32. Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Ind Crop Prod. 95:574–582CrossRefGoogle Scholar
  33. Forssell P, Lahtinen R, Lahelin M, Myllärinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohyd Polym 47(2):125–129CrossRefGoogle Scholar
  34. Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280CrossRefGoogle Scholar
  35. García M, Ferrero C, Bertola N, Martino M, Zaritzky N (2002) Edible coatings from cellulose derivatives to reduce oil uptake in fried products. Innov Food Sci Emerg 3(4):391–397CrossRefGoogle Scholar
  36. Garde A, Schmidt A, Jonsson G, Andersen M, Thomsen A, Ahring BK, Kiel P (2000) Agricultural crops and residuals as a basis for polylactate production in Denmark. In: Weber CJ (ed) Proceedings of the Food biopack conference, Copenhagen, pp 45–51Google Scholar
  37. Gatenholm P, Bodin A, Gröndahl M, Dammstrom S, Eriksson L (2008) Polymeric film or coating comprising hemicellulose. US Patent 7,427,643 B2, 23 Sept 2008Google Scholar
  38. Gaudin S, Lourdin D, Forssell P, Colonna P (2000) Antiplasticisation and oxygen permeability of starch-sorbitol films. Carbohyd Polym 43(1):33–37CrossRefGoogle Scholar
  39. Gennadios A, Hanna M, Kurth L (1997) Application of edible coatings on meats, poultry and seafoods: a review. LWT-Food Sci Technol 30(4):337–350CrossRefGoogle Scholar
  40. Ghanbarzadeh B, Almasi H, Entezami AA (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33(1):229–235CrossRefGoogle Scholar
  41. Ghosh I, Jain RK, Glasser WG (1999) Blends of biodegradable thermoplastics with lignin esters. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and materials perspectives. American Chemical Society, Washington, DC, pp 331–350CrossRefGoogle Scholar
  42. Gontard N, Guilbert S (1994) Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin. In: Mathlouthi M (ed) Food packaging and preservation. Chapman & Hall, London, pp 159–181CrossRefGoogle Scholar
  43. Gordobil O, Delucis R, Egüés I, Labidi J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crop Prod 72:46–53CrossRefGoogle Scholar
  44. Gröndahl M, Bindgard L, Gatenholm P, Hjertberg T (2013) Polymeric film or coating comprising hemicellulose. US Patent 12/527,070, 15 Oct 2013Google Scholar
  45. Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromol 5(4):1528–1535CrossRefGoogle Scholar
  46. Guilbert S, Gontard N (1995) Edible and biodegradable food packaging. Roy Soc Chem 162(1):159–159Google Scholar
  47. Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505CrossRefGoogle Scholar
  48. Hernandez-Izquierdo V, Krochta JM (2008) Thermoplastic processing of proteins for film formation—A review. J Food Sci 73(2):R30–R39CrossRefPubMedGoogle Scholar
  49. Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRefGoogle Scholar
  50. Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohyd Polym 61(3):266–275CrossRefGoogle Scholar
  51. Kester J, Fennema O (1986) Edible films and coatings: a review. Food Technol 40(12):47–59Google Scholar
  52. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619CrossRefGoogle Scholar
  53. Kibar EAA, Us F (2013) Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. J Food Eng 114(1):123–131CrossRefGoogle Scholar
  54. Kirwan MJ (2007) Paper and paperboard - Raw materials, processing and properties. In: Kirwan MJ (ed) Paper and paperboard: packaging technology. Blackwell Publishing Ltd., Oxford, pp 1–49Google Scholar
  55. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez-Garcia I, Kookos IK, Papanikolaou S, Kwanb TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627CrossRefPubMedGoogle Scholar
  56. Kovalcik A, Machovsky M, Kozakova Z, Koller M (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 94:25–34CrossRefGoogle Scholar
  57. Krochta JM (2002) Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Taylor & Francis group LLC, Boca Ranton, Florida, pp 1–41Google Scholar
  58. Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohyd Polym 103:528–537CrossRefGoogle Scholar
  59. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRefGoogle Scholar
  60. Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28(6):475–508CrossRefGoogle Scholar
  61. Liimatainen H, Sirviö JA, Kekäläinen K, Hormi O (2015) High-consistency milling of oxidized cellulose for preparing microfibrillated cellulose films. Cellulose 22(5):3151–3160CrossRefGoogle Scholar
  62. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  63. Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci F 6(3):60–75CrossRefGoogle Scholar
  64. López OV, Castillo LA, García MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloid 43:18–24CrossRefGoogle Scholar
  65. Ma X, Li R, Zhao X, Ji Q, Xing Y, Sunarso J, Xia Y (2017) Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose. Compos Part A: Appl Sci 96:155–163CrossRefGoogle Scholar
  66. Mahalik NP, Nambiar AN (2010) Trends in food packaging and manufacturing systems and technology. Trends Food Sci Technol 21(3):117–128CrossRefGoogle Scholar
  67. Malmir S, Montero B, Rico M, Barral L, Bouza R (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A: Appl Sci 93:41–48CrossRefGoogle Scholar
  68. Martelli-Tosi M, Assis OBG, Silva NC, Esposto BS, Martins MA, Tapia-Blácido DR (2017) Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohyd Polym 157:512–520CrossRefGoogle Scholar
  69. Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BW, Vicente AA (2012) Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloid. 29(2):280–289CrossRefGoogle Scholar
  70. Meriçer Ç, Minelli M, Angelis MGD, Giacinti Baschetti M, Stancampiano A, Laurita R, Gherardi M, Colombo V, Trifol J, Szabo P, Lindström T (2016) Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Ind Crop Prod 93:235–243CrossRefGoogle Scholar
  71. Mikkonen KS, Rita H, Helén H, Talja RA, Hyvönen L, Tenkanen M (2007) Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromol 8(10):3198–3205CrossRefGoogle Scholar
  72. Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Technol 28(2):90–102CrossRefGoogle Scholar
  73. Miranda CS, Ferreira MS, Magalhães MT, Bispo APG, Oliveira JC, Silva JBA, José NM (2015a) Starch-based films plasticized with glycerol and lignin from Piassava fiber reinforced with nanocrystals from Eucalyptus. Mater Today: Proc 2(1):134–140CrossRefGoogle Scholar
  74. Miranda CS, Ferreira MS, Magalhães MT, Gonçalves APB, Carneiro de Oliveira J, Guimarães DH, José NM (2015b) Effect of the glycerol and lignin extracted from Piassava fiber in cassava and corn starch films. Mater Res 18:260–264CrossRefGoogle Scholar
  75. Morris BA (2017) Why multilayer films? In: Morris BA (ed) The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew Publishing, Elsevier, Oxford, pp 3–21CrossRefGoogle Scholar
  76. Myllärinen P, Buleon A, Lahtinen R, Forssell P (2002) The crystallinity of amylose and amylopectin films. Carbohyd Polym 48(1):41–48CrossRefGoogle Scholar
  77. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2(1):23CrossRefGoogle Scholar
  78. Nisperos-Carriedo MO, Baldwin EA, Shaw PE (1991) Development of an edible coating for extending postharvest life of selected fruits and vegetables. J Am Soc Hortic Sci 107:57–60Google Scholar
  79. Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2012) Role of lignosulphonate in properties of fish gelatin films. Food Hydrocolloid 27(1):60–71CrossRefGoogle Scholar
  80. Oinonen P, Krawczyk H, Ek M, Henriksson G, Moriana R (2016) Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties. Carbohyd Polym 136:146–153CrossRefGoogle Scholar
  81. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423CrossRefGoogle Scholar
  82. Olivas GI, Barbosa-Cánovas G (2009) Edible films and coatings for fruits and vegetables. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 211–244CrossRefGoogle Scholar
  83. Pavlath A, Orts W (2009) Edible films and coatings: Why, what, and how? In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 1–23Google Scholar
  84. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biot. 82(3):233–247CrossRefGoogle Scholar
  85. Pouteau C, Baumberger S, Cathala B, Dole P (2004) Lignin-polymer blends: evaluation of compatibility by image analysis. C R Biol 327(9–10):935–943CrossRefPubMedGoogle Scholar
  86. Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19(1):152–165CrossRefGoogle Scholar
  87. Quilaqueo Gutiérrez M, Echeverría I, Ihl M, Bifani V, Mauri AN (2012) Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohyd Polym 87(2):1495–1502CrossRefGoogle Scholar
  88. Robertson GL (2013) Paper and paper-based packaging materials. In: Robertson GL (ed) Food packaging: principles and practice. CRC Press, Taylor & Francis group LLC, Boca Ranton, Florida, pp 167–188Google Scholar
  89. Rodríguez M, Osés J, Ziani K, Maté JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39(8):840–846CrossRefGoogle Scholar
  90. Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohyd Polym 92(2):2154–2162CrossRefGoogle Scholar
  91. Saarikoski E, Rissanen M, Seppälä J (2015) Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming. Carbohyd Polym 119:62–70CrossRefGoogle Scholar
  92. Saxena A, Elder TJ, Ragauskas AJ (2011) Moisture barrier properties of xylan composite films. Carbohyd Polym 84(4):1371–1377CrossRefGoogle Scholar
  93. Sirvio JA, Liimatainen H, Niinimaki J, Hormi O (2013) Sustainable packaging materials based on wood cellulose. RSC Adv. 3(37):16590–16596CrossRefGoogle Scholar
  94. Song J, Kay M, Coles R (2011) Bioplastics. In: Coles R, Kirwan M (eds) Food and beverage packaging technology. Blackwell publishing Ltd., Wiley, London, pp 295–319CrossRefGoogle Scholar
  95. Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50(3):149–155CrossRefGoogle Scholar
  96. Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos Part B: Eng 69:342–349CrossRefGoogle Scholar
  97. Talja R, Poppius-Levlin K (2011) Xylan from wood biorefinery–A novel approach. In: FlexPakRenew workshop: Planet friendly packaging, Lyon France, 10 May 2011Google Scholar
  98. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660CrossRefGoogle Scholar
  99. Tong Q, Xiao Q, Lim L-T (2008) Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Res Int 41(10):1007–1014CrossRefGoogle Scholar
  100. Ustunol Z (2009) Edible films and coatings for meat and poultry. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 245–268CrossRefGoogle Scholar
  101. Wang J, Manley RSJ, Feldman D (1992) Synthetic polymer-lignin copolymers and blends. Prog Polym Sci 17(4):611–646CrossRefGoogle Scholar
  102. Wang S, Lee S, Cheng Q (2010) Mechanical properties of cellulosic materials at micro-and nanoscale levels. In: Lejeune A, Deprez T (eds) Cellulose: Structure and properties. Nova Science Publishers, Inc, pp 459–500Google Scholar
  103. Weber C, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19(S1):172–177CrossRefPubMedGoogle Scholar
  104. Xu Y, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: Preparation and characterization. Ind Crop Prod 21(2):185–192CrossRefGoogle Scholar
  105. Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromol 12(7):2766–2771CrossRefGoogle Scholar
  106. Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1987) Kraft lignin in polyurethanes I. Mechanical properties of polyurethanes from a kraft lignin–polyether triol–polymeric MDI system. J Appl Polym Sci 34(3):1187–1198CrossRefGoogle Scholar
  107. Yu H-Y, Qin Z-Y, Liu L, Yang X-G, Zhou Y, Yao J-M (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol. 87:22–28CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Lina Fernanda Ballesteros
    • 1
  • Michele Michelin
    • 2
  • António Augusto Vicente
    • 3
  • José António Teixeira
    • 4
  • Miguel Ângelo Cerqueira
    • 5
  1. 1.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  3. 3.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  4. 4.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  5. 5.International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations