Critical Care for Potential Liver Transplant Candidates: Ventilation

  • Catherine Paugam-BurtzEmail author
  • Emmanuel Weiss
  • Samir Jaber


End-stage liver disease or cirrhotic patients frequently require admission to an intensive care unit for the treatment of organ failure. Mechanical ventilation, which is frequently required, is consistently associated with a significantly increased rate of in-hospital mortality. Despite a lack of research focused on the cirrhotic population, there is a growing body of evidence from the general ICU or perioperative population showing that appropriate management of ventilatory support is associated with improved outcomes. Moreover, synergistic ventilatory strategies from the preoperative ICU period to the intraoperative and then the postoperative period may be an important pathway for further improvements in the outcomes of these patients.


End-stage liver disease Cirrhosis Liver transplantation Mechanical ventilation 


  1. 1.
    Das V, et al. Cirrhotic patients in the medical intensive care unit: early prognosis and long-term survival. Crit Care Med. 2010;38(11):2108–16.CrossRefGoogle Scholar
  2. 2.
    Galbois A, et al. Prognostic scores for cirrhotic patients admitted to an intensive care unit: which consequences for liver transplantation? Clin Res Hepatol Gastroenterol. 2013;37(5):455–66.CrossRefGoogle Scholar
  3. 3.
    Weil D, et al. Prognosis of cirrhotic patients admitted to intensive care unit: a meta-analysis. Ann Intensive Care. 2017;7(1):33.CrossRefGoogle Scholar
  4. 4.
    Majumdar A, et al. Declining mortality in critically ill patients with cirrhosis in Australia and New Zealand between 2000 and 2015. J Hepatol. 2017;67:1185.CrossRefGoogle Scholar
  5. 5.
    Levesque E, et al. Outcome of patients with cirrhosis requiring mechanical ventilation in ICU. J Hepatol. 2014;60(3):570–8.CrossRefGoogle Scholar
  6. 6.
    Annamalai A, et al. Predictors of mortality in the critically ill cirrhotic patient: is the model for end-stage liver disease enough? J Am Coll Surg. 2017;224(3):276–82.CrossRefGoogle Scholar
  7. 7.
    Levesque E, et al. Liver transplantation in patients with end-stage liver disease requiring intensive care unit admission and intubation. Liver Transpl. 2015;21(10):1331–2.CrossRefGoogle Scholar
  8. 8.
    Huang CT, et al. Pre-operative risk factors predict post-operative respiratory failure after liver transplantation. PLoS One. 2011;6(8):e22689.CrossRefGoogle Scholar
  9. 9.
    Kleine M, et al. Respiratory risk score for the prediction of 3-month mortality and prolonged ventilation after liver transplantation. Liver Transpl. 2013;19(8):862–71.CrossRefGoogle Scholar
  10. 10.
    Yuan H, et al. Prognostic impact of mechanical ventilation after liver transplantation: a national database study. Am J Surg. 2014;208(4):582–90.CrossRefGoogle Scholar
  11. 11.
    Knaak J, et al. Liver transplantation in patients with end-stage liver disease requiring intensive care unit admission and intubation. Liver Transpl. 2015;21(6):761–7.CrossRefGoogle Scholar
  12. 12.
    Chan KC, et al. Patterns of perioperative thoracic fluid indices changes in liver transplantation with or without postoperative acute lung injury. J Formos Med Assoc. 2017;116(6):432–40.CrossRefGoogle Scholar
  13. 13.
    Frat JP, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.CrossRefGoogle Scholar
  14. 14.
    Lin SM, et al. Does high-flow nasal cannula oxygen improve outcome in acute hypoxemic respiratory failure? A systematic review and meta-analysis. Respir Med. 2017;131:58–64.CrossRefGoogle Scholar
  15. 15.
    Zhao H, et al. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis. Crit Care. 2017;21(1):184.CrossRefGoogle Scholar
  16. 16.
    Serpa Neto A, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–9.CrossRefGoogle Scholar
  17. 17.
    Jaber S, et al. The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Med. 2017;43:1352.CrossRefGoogle Scholar
  18. 18.
    Fan E, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.CrossRefGoogle Scholar
  19. 19.
    Weiss E, et al. Type I interferon signaling in systemic immune cells from patients with alcoholic cirrhosis and its association with outcome. J Hepatol. 2017;66(5):930–41.CrossRefGoogle Scholar
  20. 20.
    Strnad P, et al. Liver – guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14(1):55–66.CrossRefGoogle Scholar
  21. 21.
    Blackwood B, et al. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev. 2014;(11):CD006904.Google Scholar
  22. 22.
    Caroff DA, Szumita PM, Klompas M. The relationship between sedatives, sedative strategy, and healthcare-associated infection: a systematic review. Infect Control Hosp Epidemiol. 2016;37(10):1234–42.CrossRefGoogle Scholar
  23. 23.
    Khan R, et al. The impact of implementing multifaceted interventions on the prevention of ventilator-associated pneumonia. Am J Infect Control. 2016;44(3):320–6.CrossRefGoogle Scholar
  24. 24.
    Neuville M, et al. Bundle of care decreased ventilator-associated events-implications for ventilator-associated pneumonia prevention. J Thorac Dis. 2017;9(3):430–3.CrossRefGoogle Scholar
  25. 25.
    Klompas M, et al. Associations between ventilator bundle components and outcomes. JAMA Intern Med. 2016;176(9):1277–83.CrossRefGoogle Scholar
  26. 26.
    Wang L, et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev. 2016;(1):CD009946.Google Scholar
  27. 27.
    Cocoros NM, Klompas M. Ventilator-associated events and their prevention. Infect Dis Clin N Am. 2016;30(4):887–908.CrossRefGoogle Scholar
  28. 28.
    Futier E, Marret E, Jaber S. Perioperative positive pressure ventilation: an integrated approach to improve pulmonary care. Anesthesiology. 2014;121(2):400–8.CrossRefGoogle Scholar
  29. 29.
    Ball L, et al. Intraoperative mechanical ventilation: state of the art. Minerva Anestesiol. 2017;83(10):1075–88.PubMedGoogle Scholar
  30. 30.
    Futier E, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.CrossRefGoogle Scholar
  31. 31.
    Pedersen MR, et al. Pretransplant factors and associations with postoperative respiratory failure, ICU length of stay, and short-term survival after liver transplantation in a high MELD population. J Transp Secur. 2016;2016:6787854.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Catherine Paugam-Burtz
    • 1
    • 2
    Email author
  • Emmanuel Weiss
    • 1
    • 2
  • Samir Jaber
    • 3
  1. 1.Department of Anesthesiology and Critical Care MedicineHôpital Beaujon, APHPClichyFrance
  2. 2.Paris Diderot (Paris 7) University, Paris France and Inserm UMR_S1149, Center for Research on InflammationParisFrance
  3. 3.Department of Anesthesiology and Critical Care Medicine B (DAR B), Saint-Eloi Hospital, University Teaching Hospital of Montpellier, INSERM U104680MontpellierFrance

Personalised recommendations