Electricigens: Role and Prominence in Microbial Fuel Cell Performance

  • Deepika Jothinathan
  • Prabhakaran Mylsamy
  • L. Benedict Bruno


Microorganisms play a vital role in the electron transfer in the anodic chamber. These microbes achieve this via various mechanisms, namely, direct electron transfer and indirect electron transfer. Electricigens are the microbes that are capable of transferring electrons to the anode. Predominant microbes that are studied in the microbial fuel cell (MFC) are Geobacter sp. and Shewanella sp. because of their high-power output. There has been a steep increase in the number of research articles published in the recent years concentrating on different bacterial families in the MFC. Each microbe has been studied in detail, and their electron transfer mechanisms, power output and behaviour inside the anodic chamber have been explored. This has provided a pavement for the future researchers to work on different aspects of the microorganisms. Even the techniques for studying the biofilm nature, electrochemical activity and power output have developed much, and this has aided the scientists to do the investigation in a broader spectrum.


Microorganism Electron transfer Anodic chamber 



Dr. J. Deepika is very much thankful to the Head of the Department, Department of Life Sciences, Central University of Tamil Nadu, for motivating her in writing the chapter. Dr. L. Benedict Bruno thankfully acknowledges the Science and Engineering Board, National Postdoctoral fellowship Scheme (Grant No.PDF/2017/001074), for financial support.


  1. Astner S (2010) Ulrich M. Confocal laser scanning microscopy. Hautarzt 61:421–428CrossRefGoogle Scholar
  2. Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112(4):379–387CrossRefGoogle Scholar
  3. Baranitharan E, Khan MR, Prasad DM, Teo WF, Tan GY, Jose R (2015) Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess Biosyst Eng 38(1):15–24CrossRefGoogle Scholar
  4. Beech IB, Smith JR, Steele AA, Penegar I, Campbell SA (2002) The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf B: Biointerfaces 23(2):231–247CrossRefGoogle Scholar
  5. Bélafi-Bako K, Vajda B, Nemestothy N (2011) Study on operation of a microbial fuel cell using mesophilic anaerobic sludge. Desalination Water Treat 35(1–3):222–226CrossRefGoogle Scholar
  6. Bellin DL, Sakhtah H, Rosenstein JK, Levine PM, Thimot J, Emmett K, Dietrich LE, Shepard KL (2014) Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat Commun 5:3256CrossRefGoogle Scholar
  7. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189CrossRefGoogle Scholar
  8. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485CrossRefGoogle Scholar
  9. Busalmen JP, Esteve-Nunez A, Feliu JM (2008) Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ Sci Technol 42(7):2445–2450CrossRefGoogle Scholar
  10. Cato EP, George WL, Finegold SM (1986) Genus Clostridium. In: Sneath PHA et al (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, MD, pp 1141–1200Google Scholar
  11. Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177Google Scholar
  12. Chen SL, Kucernak A (2004) Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J Phys Chem B 108(37):13984–13994CrossRefGoogle Scholar
  13. Chen W, Liu X-Y, Qian C, Song X-N, Li W-W, Yu H-Q (2015) An UV–vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics. Biosens Bioelectron 64:25–29CrossRefGoogle Scholar
  14. Cheng CY, Liang FY, Chung YC (2014) Electricity generation from crystal violet using a single-chambered microbial fuel cell inoculated Aeromonas hydrophila YC 57. Adv Mater Res 860:466–471Google Scholar
  15. Chung K, Okabe S (2009) Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Biotechnol Bioeng 104(5):901–910CrossRefGoogle Scholar
  16. Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovely DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536Google Scholar
  17. Dalvi AD, Mohandas N, Shinde OA, Kininge PT (2011) Microbial fuel cell for production of bioelectricity from whey and biological waste treatment. Int J Adv Biotechnol Res 2(2):263–268Google Scholar
  18. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  19. Dufrêne YF (2010) Atomic force microscopy of fungal cell walls: an update. Yeast 27(8):465–471CrossRefGoogle Scholar
  20. Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:1–469CrossRefGoogle Scholar
  21. Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I (2009) Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl Environ Microbiol 75(23):7326–7334CrossRefGoogle Scholar
  22. Feng C, Yue X, Li F, Weia C (2013) Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria. Biosens Bioelectron 39(1):51–56CrossRefGoogle Scholar
  23. Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour Technol 102(1):312–315CrossRefGoogle Scholar
  24. Finneran K, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673CrossRefGoogle Scholar
  25. Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71(8):4199–4202CrossRefGoogle Scholar
  26. Friman H, Schechter A, Ioffe Y, Nitzan Y, Cahan R (2013) Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microb Biotechnol 6(4):425–434CrossRefGoogle Scholar
  27. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103(30):11358–11363CrossRefGoogle Scholar
  28. Ha PT, Tae B, Chang IS (2008) Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuel 22:164–168CrossRefGoogle Scholar
  29. Haslett ND, Rawson FJ, Barriëre F, Kunze G, Pasco N, Gooneratne R, Baronian KHR (2011) Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens Bioelectron 26(9):3742–3747CrossRefGoogle Scholar
  30. Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methe BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8(10):1805–1815CrossRefGoogle Scholar
  31. Huang L, Xue H, Zhou Q, Zhou P, Quan X (2018) Imaging and distribution of Cd (II) ions in electrotrophs and its response to current and electron transfer inhibitor in microbial electrolysis cells. Sensors Actuators B Chem 255:244–254CrossRefGoogle Scholar
  32. Hubenova Y, Mitov M (2010) Bioelectrochemistry potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 78(1):57–61CrossRefGoogle Scholar
  33. Hubenova Y, Mitov M (2015) Extracellular electron transfer in yeast–based biofuel cells: a review. Bioelectrochemistry 106:177–185CrossRefGoogle Scholar
  34. Hussain A, Bruant G, Mehta P, Raghavan V, Tartakovsky B, Guiot SR (2014) Population analysis of mesophilic microbial fuel cells fed with carbon monoxide. Appl Biochem Biotechnol 172(2):713–726CrossRefGoogle Scholar
  35. Jothinathan D, Wilson RT (2017) Production of bioelectricity in MFC by Pseudomonas fragi DRR-2 (psychrophilic) isolated from goat rumen fluid. Energy Sources A 39(4):433–440CrossRefGoogle Scholar
  36. Kim HJ, Park DH, Hyun MS, Chang IS, Kim M, Kim BH (1999) Mediatorless fuel cell. US Patent 5,976,719Google Scholar
  37. Kingsly A, Jothinathan D, Thilagaraj WR (2017) Degradation of oleic acid and simultaneous bioelectricity production by Klebsiella oxytoca ADR 13. Energy Sources A 39(9):874–882CrossRefGoogle Scholar
  38. Kramer J, Soukiazian S, Mahoney S, Hicks-Garner J (2012) Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes. J Power Sources 210:122–128CrossRefGoogle Scholar
  39. Kumar SS, Malyan SK, Basu S, Bishnoi NR (2017) Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environ Sci Pollut Res 23:1–2Google Scholar
  40. Lanthier M, Gregory KB, Lovley DR (2008) Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol Lett 278(1):29–35CrossRefGoogle Scholar
  41. Lee CY, Ho KL, Lee DJ, Su A, Chang JS (2012) Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrifier, Pseudomonas sp. C27. Int J Hydrog Energy 37(20):15827–15832CrossRefGoogle Scholar
  42. Li SW, He H, Zeng RJ, Sheng GP (2017) Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere 168:293–299CrossRefGoogle Scholar
  43. Liu F, Zhang J, Zhang S, Li W, Duan J, Hou B (2012) Effect of sulphate reducing bacteria on corrosion of Al Zn In Sn sacrificial anodes in marine sediment. Mater Corros 63(5):431–437CrossRefGoogle Scholar
  44. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381CrossRefGoogle Scholar
  45. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518CrossRefGoogle Scholar
  46. Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555CrossRefGoogle Scholar
  47. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508CrossRefGoogle Scholar
  48. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:1–8CrossRefGoogle Scholar
  49. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3:27–35CrossRefGoogle Scholar
  50. Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37:225–237CrossRefGoogle Scholar
  51. Mardiana U, Innocent C, Cretin M, Buchari B, Gandasasmita S (2016) Yeast fuel cell: application for desalination. IOP Conf Ser Mater Sci Eng 107:012049CrossRefGoogle Scholar
  52. Martin E, Tartakovsky B, Savadogo O (2011) Cathode materials evaluation in microbial fuel cells: a comparison of carbon, Mn2O3, Fe2O3 and platinum materials. Electrochim Acta 58:58–66CrossRefGoogle Scholar
  53. Mathuriya AS, Sharma VN (2009) Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species. J Biochem Technol 1(2):49–52Google Scholar
  54. Mathuriya AS, Sharma VN (2010) Electricity generation by Saccharomyces cerevisiae and Clostridium acetobutylicum via microbial fuel cell technology: a comparative study. Adv Biol Res 4(4):217–223Google Scholar
  55. Mohan Y, Kumar SM, Das D (2008) Electricity generation using microbial fuel cells. Int J Hydrog Energy 33(1):423–426CrossRefGoogle Scholar
  56. Murphy DB, Davidson MW (2012) Confocal laser scanning microscopy. In: Fundamentals of light microscopy and electronic imaging. Wiley, New York, pp 265–305CrossRefGoogle Scholar
  57. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10(10):2505–2514CrossRefGoogle Scholar
  58. Niemantsverdriet JW (2007) Spectroscopy in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  59. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167:11–17CrossRefGoogle Scholar
  60. Osman MH, Shah AA, Walsh FC (2010) Recent progress and continuing challenges in bio-fuel cells part II: microbial. Biosens Bioelectron 26:953–963CrossRefGoogle Scholar
  61. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306CrossRefGoogle Scholar
  62. Park HI, Sanchez D, Cho SK, Yun M (2008) Bacterial communities on electron-beam Pt-deposited electrodes in a mediator-less microbial fuel cell. Environ Sci Technol 42(16):6243–6249CrossRefGoogle Scholar
  63. Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134CrossRefGoogle Scholar
  64. Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hoefte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129CrossRefGoogle Scholar
  65. Rahimnejad M, Ghoreyshi AA, Najafpour GD, Younesi H, Shakeri M (2012a) A novel microbial fuel cell stack for continuous production of clean energy. Int J Hydrog Energy 37:5992–6000CrossRefGoogle Scholar
  66. Rahimnejad M, Najafpour GD, Ghoreyshi AA, Talebnia F, Premier GC, Bakeri G, Kim JR, Oh SE (2012b) Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J Microbiol 50:575–580CrossRefGoogle Scholar
  67. Ramasamy RP, Ren Z, Redcloud-Owen S, Mench MM, Regan JM (2008) Effect of biofilm properties on the electrochemical performance of microbial fuel cells. ECS Trans 13(21):11–17CrossRefGoogle Scholar
  68. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  69. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348CrossRefGoogle Scholar
  70. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195CrossRefGoogle Scholar
  71. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678CrossRefGoogle Scholar
  72. Richter H, Lanthier M, Nevin KP, Lovley DR (2007) Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe (III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl Environ Microbiol 73(16):5347–5353CrossRefGoogle Scholar
  73. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1:417–429CrossRefGoogle Scholar
  74. Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634CrossRefGoogle Scholar
  75. Ringeisen BR, Lizewski SE, Fitzgerald LA, Biffinger JC, Knight CL, Crookes-Goodson WJ, Wu PK (2010) Single cell isolation of bacteria from microbial fuel cells and Potomac River sediment. Electroanalysis 22(7–8):875–882CrossRefGoogle Scholar
  76. Rossi R, Fedrigucci A, Setti L (2015) Characterization of electron mediated microbial fuel cell by Saccharomyces cerevisiae. Chem Eng Trans 43:337–342Google Scholar
  77. Scott K, Rimbu GA, Katuri KP, Prasad KK, Head IM (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ Prot 85:481–488CrossRefGoogle Scholar
  78. Sharma SC, Sun Q, Li J, Wang Y, Suanon F, Yang J, Yu CP (2016) Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2, 6-disulfonate and Fe3O4 nanoparticles. Int Biodeterior Biodegrad 112:88–97CrossRefGoogle Scholar
  79. Shatwell KP, Dancis A, Cross AR, Klausnert RD (1996) The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271(24):14240–14244CrossRefGoogle Scholar
  80. Shen HB, Yong XY, Chen YL, Liao ZH, Si RW, Zhou J, Wang SY, Yong YC, OuYang PK, Zheng T (2014) Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour Technol 167:490–494CrossRefGoogle Scholar
  81. Song Z, Zhou J, Wang J, Yan B, Du C (2003) Decolorization of azo dyes by Rhodobacter sphaeroides. Biotechnol Lett 25(21):1815–1818CrossRefGoogle Scholar
  82. Torres CI, Marcus AK, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77:689–697CrossRefGoogle Scholar
  83. Vukomanovic DV, Zoutman DE, Marks GS, Brien JF, van Loon GW, Nakatsu K (1996) Analysis of pyocyanin from Pseudomonas aeruginosa by adsorptive stripping voltammetry. J Pharmacol Toxicol Methods 36(2):97–102CrossRefGoogle Scholar
  84. Wang X, Feng YJ, Ren NQ, Wang HM, Lee H, Li N, Zhao QL (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54(3):1109–1114CrossRefGoogle Scholar
  85. Wang A, Sun D, Ren N, Liu C, Liu W, Logan BE, Wu WM (2010) A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresour Technol 101(14):5733–5735CrossRefGoogle Scholar
  86. Wells CL, Wilkins TD (1996) Clostridia: sporeforming anaerobic bacilli. In: Baron S et al (eds) Baron’s medical microbiology, 4th edn. University of Texas Medical Branch, Galveston, TXGoogle Scholar
  87. Wu CY, Zhuang L, Zhou SG, Li FB, He J (2011) Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 61(4):882–887CrossRefGoogle Scholar
  88. Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111(5):1108–1115CrossRefGoogle Scholar
  89. Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H (2015) Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 4(7):815–823CrossRefGoogle Scholar
  90. Yan-Ping XMYS (2008) Preliminary study on E.coli microbial fuel cell and on-electrode taming of the biocatalyst. Chin J Process Eng 8:179–1184Google Scholar
  91. Yokoyama H, Ishida M, Yamashita T (2016) Comparison of anodic community in microbial fuel cells with iron oxide-reducing community. J Microbiol Biotechnol 26(4):757–762CrossRefGoogle Scholar
  92. Yong XY, Feng J, Chen YL, Shi DY, Xu YS, Zhou J, Wang SY, Xu L, Yong YC, Sun YM (2014a) Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelectron 56:19–25CrossRefGoogle Scholar
  93. Yong XY, Shi DY, Chen YL, Jiao F, Lin X, Zhou J, Wang SY, Yong YC, Sun YM, OuYang PK (2014b) Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour Technol 152:220–224CrossRefGoogle Scholar
  94. Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L (2008) Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem Commun 10(10):1641–1643CrossRefGoogle Scholar
  95. Zhang J, Zhang Y, Liu B, Dai Y, Quan X, Chen S (2014) A direct approach for enhancing the performances of a microbial electrolysis cell (MEC) combined anaerobic reactor dosing ferric iron: enrichment and isolation of Fe(III) reducing bacteria. Chem Eng J 248:223–229CrossRefGoogle Scholar
  96. Zhang YC, Jiang ZH, Ying LI (2015) Application of electrochemically active bacteria as anodic biocatalyst in microbial fuel cells. Chin J Anal Chem 43(1):155–163CrossRefGoogle Scholar
  97. Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Deepika Jothinathan
    • 1
  • Prabhakaran Mylsamy
    • 2
  • L. Benedict Bruno
    • 3
  1. 1.Department of Life SciencesCentral University of Tamil NaduThiruvarurIndia
  2. 2.Post Graduate and Research Department of BotanyPachaiyappa’s CollegeChennaiIndia
  3. 3.Department of Environmental SciencesBharathiar UniversityCoimbatoreIndia

Personalised recommendations