Advertisement

A Multi-stakeholder Approach to Energy Transition Policy Formation in Jordan

  • Mats Danielson
  • Love Ekenberg
  • Nadejda Komendantova
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 315)

Abstract

We present the method used in an ongoing project in Jordan for a multi-stakeholder, multi-criteria problem of formulating a nationwide energy strategy for the country for the next decades. The Jordanian government has recognized the need for energy transition and the main goal of the energy strategy is to provide a reliable energy supply by increasing the share of local energy resources in the energy mix, while reducing dependency on imported fossil fuels, by diversifying energy resources, also including renewable energy sources, nuclear and shale oil, and by enhancing environmental protection. There were strong incentives for a collaborative approach, since the ways in which different stakeholder groups subjectively attach meanings to electricity generation technologies are recognized as important issues shaping the attainment of energy planning objectives. To understand the meaning of these constructs, we are using a multi-stakeholder multi-criteria decision analysis (MCDA) approach to elicit criteria weights and valuations.

Keywords

Energy policies Multi-stakeholder workshops Multi-criteria decision analysis Surrogate criteria weights Robustness 

Notes

Acknowledgements

This research was partly funded by the project Middle East North Africa Sustainable Electricity Trajectories (MENA-SELECT) and partly by the strategic grants from the Swedish government within ICT – The Next Generation.

References

  1. 1.
    Afgan, N.H., Carvalho, M.G.: Multi-criteria assessment of new and renewable energy power plants. Energy 27, 739–755 (2002)CrossRefGoogle Scholar
  2. 2.
    Beccali, M., Cellura, M., Mistretta, M.: Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renew. Energy 28, 2063–2087 (2003)CrossRefGoogle Scholar
  3. 3.
    Bidwell, D.: Thinking through participation in renewable energy decisions. Nat. Energy 1, 16051 (2016)CrossRefGoogle Scholar
  4. 4.
    Danielson, M., Ekenberg, L.: A framework for analysing decisions under risk. Eur. J. Oper. Res. 104(3), 474–484 (1998)CrossRefGoogle Scholar
  5. 5.
    Danielson, M., Ekenberg, L.: A robustness study of state-of-the-art surrogate weights for MCDM. Group Decis. Negot. 7 (2016).  https://doi.org/10.1007/s10726-016-9494-6CrossRefGoogle Scholar
  6. 6.
    Danielson, M., Ekenberg, L., He, Y.: Augmenting ordinal methods of attribute weight approximation. Decis. Anal. 11(1), 21–26 (2014)CrossRefGoogle Scholar
  7. 7.
    Danielson, M., Ekenberg, L.: Computing upper and lower bounds in interval decision trees. Eur. J. Oper. Res. 181(2), 808–816 (2007)CrossRefGoogle Scholar
  8. 8.
    Danielson, M., Ekenberg, L.: Rank ordering methods for multi-criteria decisions. In: Zaraté, P., Kersten, G.E., Hernández, J.E. (eds.) GDN 2014. LNBIP, vol. 180, pp. 128–135. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07179-4_14CrossRefGoogle Scholar
  9. 9.
    Danielson, M., Ekenberg, L.: The CAR method for using preference strength in multi-criteria decision making. Group Decis. Negot. 25(4), 775–797 (2016).  https://doi.org/10.1007/s10726-015-9460-8CrossRefGoogle Scholar
  10. 10.
    Danielson, M., Ekenberg, L.: Trade-offs for ordinal ranking methods in multi-criteria decisions. In: Bajwa, D., Koeszegi, S.T., Vetschera, R. (eds.) GDN 2016. LNBIP, vol. 274, pp. 16–27. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52624-9_2CrossRefGoogle Scholar
  11. 11.
    Del Rio, P., Burguillo, M.: Assessing the impact of renewable energy deployment on local sustainability: towards a theoretical framework. Renew. Sustain. Energy Rev. 12, 1325–1344 (2008)CrossRefGoogle Scholar
  12. 12.
    Del Rio, P., Burguillo, M.: An empirical analysis of the impact of renewable energy deployment on local sustainability. Renew. Sustain. Energy Rev. 13, 1314–1325 (2009)CrossRefGoogle Scholar
  13. 13.
    Edwards, W., Barron, F.: SMARTS and SMARTER: improved simple methods for multiattribute utility measurement. Organ. Behav. Hum. Decis. Process. 60, 306–325 (1994)CrossRefGoogle Scholar
  14. 14.
    Edwards, W.: How to use multiattribute utility measurement for social decisionmaking. IEEE Trans. Syst. Man Cybern. 7(5), 326–340 (1977)CrossRefGoogle Scholar
  15. 15.
    Edwards, W.: Social utilities. Eng. Econ. Summer Symp. Ser. 6, 119–129 (1971)Google Scholar
  16. 16.
    Erol, Ö., Kilkis, B.: An energy source policy assessment using analytical hierarchy process. Energy Convers. Manag. 63, 245–252 (2012)CrossRefGoogle Scholar
  17. 17.
    Figueira, J., Roy, B.: Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. Eur. J. Oper. Res. 139, 317–326 (2002)CrossRefGoogle Scholar
  18. 18.
    Fligstein, N., McAdam, D.: A Theory of Fields. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  19. 19.
    Grafakos, S., Flamos, A., Enseñado, E.M.: Preferences matter: a constructive approach to incorporating local stakeholders’ preferences in the sustainability evaluation of energy technologies. Sustainability 7, 10922–10960 (2015)CrossRefGoogle Scholar
  20. 20.
    Grafakos, S., Gianoli, A., Tsatso, A.: Towards the development of an integrated sustainability and resilience benefits assessment framework of urban green growth interventions. Sustainability 8, 461 (2016)CrossRefGoogle Scholar
  21. 21.
    Hirschberg, S., Burgherr, P., Spiekerman, G., Dones, R.: Severe accidents in the Energy Sector. PSI Report No. 98-16, Villigen (1998)Google Scholar
  22. 22.
    Komendantova, N., Irshaid, J., Marashdeh, L., Al-Salaymeh, A., Ekenberg, L., Linnerooth-Bayer, J.: Country Fact Sheet Jordan: Energy and Development at a Glance 2017: Background Paper. Middle East North Africa Sustainable Electricity Trajectories (MENA-SELECT) Project Funded by the Federal Ministry for Economic Cooperation and Development (BMZ), 65 pp. (2017)Google Scholar
  23. 23.
    Kowalski, K., Stagl, S., Madlener, R., Omann, I.: Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. Eur. J. Oper. Res. 197, 1063–1074 (2009)CrossRefGoogle Scholar
  24. 24.
    Latinopoulos, D., Kechagia, K.: A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy 78, 550–560 (2015)CrossRefGoogle Scholar
  25. 25.
    Oberschmidt, J., Geldermann, J., Ludwig, J., Schmehl, M.: Modified PROMETHEE approach for assessing energy technologies. Int. J. Energy Sect. Manag. 4, 183–212 (2010)CrossRefGoogle Scholar
  26. 26.
    Palinkas, L.A., Horwitz, S.M., Green, C.A., Wisdom, J.P., Duan, N., Hoagwood, K.: Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm. Policy Ment. Health Ment. Health Serv. Res. 42, 533–544 (2015)CrossRefGoogle Scholar
  27. 27.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)CrossRefGoogle Scholar
  28. 28.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)Google Scholar
  29. 29.
    Simos, J.: Evaluer l’impact sur l’environnement: Une approche originale par l’analyse multicriteere et la negociation. Presses Polytechniques et Universitaires Romandes, Lausanne (1990)Google Scholar
  30. 30.
    Simos, J.: L’evaluation environnementale: Un processus cognitif neegociee. Theese de doctorat, DGF-EPFL, Lausanne (1990)Google Scholar
  31. 31.
    Schweizer, P.-J., Renn, O., Köck, W., Bovet, J., Benighaus, C., Scheel, O., Schröter, R.: Public participation for infrastructure planning in the context of the German “Energiewende”. Utilities Policy (2014, in press)Google Scholar
  32. 32.
    Sánchez-Lozano, J.M., Henggeler Antunes, C., García-Cascales, M.S., Dias, L.C.: GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renew. Energy 66, 478–494 (2014)CrossRefGoogle Scholar
  33. 33.
    Shortall, R., Davidsdottir, B., Axelsson, G.: Development of a sustainability assessment framework for geothermal energy projects. Energy. Sustain. Dev. 27, 28–45 (2015)CrossRefGoogle Scholar
  34. 34.
    Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., Kiosses, I.: Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy 37, 1587–1600 (2009)CrossRefGoogle Scholar
  35. 35.
    Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., Zhao, J.-H.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 13, 2263–2278 (2009)CrossRefGoogle Scholar
  36. 36.
    Zangeneh, A., Jadid, S., Rahimi-Kian, A.: A hierarchical decision making model for the prioritization of distributed generation technologies: a case study for Iran. Energy Policy 37, 5752–5763 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mats Danielson
    • 1
    • 2
  • Love Ekenberg
    • 1
    • 2
  • Nadejda Komendantova
    • 2
    • 3
  1. 1.Department of Computer and Systems SciencesStockholm UniversityKistaSweden
  2. 2.International Institute for Applied Systems Analysis, IIASALaxenburgAustria
  3. 3.Department of Environmental Systems ScienceInstitute for Environmental Decisions (ETH)ZurichSwitzerland

Personalised recommendations