Advertisement

Using Wireless Sensor to Acquire Live Data on a SCADA System, Towards Monitoring File Integrity

  • Mohamed ElhosenyEmail author
  • Aboul Ella Hassanien
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 165)

Abstract

SCADA systems are network presence systems that face significant threats and attacks. After an attack occurred, SCADA requires forensic investigation to understand the cause and effects of the intrusion or disruption on the systems services. However, forensic investigators cannot turn it off during acquiring the live data that is required for the investigation and analysis process. That is because the systems services need to be continuously operational. Despite the great efforts to acquire live data on SCADA systems, the continuously change of this type of data and the risk on the systems services make it a big challenge. In this proposal, we suggest a new method to acquire live data on a SCADA system using wireless sensor network. The proposed idea attempts to monitor file integrity and acquire live data in a way that minimizes risk to the systems services. In addition, it aims to help Forensic investigators by guarantee early data acquisition after incident and digital evidence validity as well.

References

  1. 1.
    Ahmed, I., Obermeier, S., Naedele, M., & Richard, G. (2012). Scada systems: Challenges for forensic investigators. Computer, 45(12), 44–51.CrossRefGoogle Scholar
  2. 2.
    Elhoseny, M., Hosny, A., Hassanien, A. E., Muhammad, K., & Sangaiah, A. K. (2017). Secure automated forensic investigation for sustainable critical infrastructures compliant with green computing requirements. IEEE Transactions on Sustainable Computing, PP(99).  https://doi.org/10.1109/TSUSC.2017.2782737.
  3. 3.
    Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid model of internet of things and cloud computing to manage big data in health services applications. Future Generation Computer Systems. Elsevier. (in Press).Google Scholar
  4. 4.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., & Riad, A. M. (2018). A machine learning model for improving healthcare services on cloud computing environment. Measurement, 119, 117–128.  https://doi.org/10.1016/j.measurement.2018.01.022.CrossRefGoogle Scholar
  5. 5.
    Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2017). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing. Springer.  https://doi.org/10.1007/s12652-017-0659-1.
  6. 6.
    Yuan, X., Li, D., Mohapatra, D., & Elhoseny, M. (2017). Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.026. (in Press).
  7. 7.
    Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., Elhoseny, M., & Baik, S. W. (2017). Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems. Elsevier.  https://doi.org/10.1016/j.future.2017.11.013.
  8. 8.
    Shehab, A., Elhoseny, M., El Aziz, M. A., & Hassanien A. E. (2018). Efficient schemes for playout latency reduction in P2P-VoD systems. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_22.
  9. 9.
    Elhoseny, M., Nabil, A., Hassanien, A. E., & Oliva, D. (2018). Hybrid rough neural network model for signature recognition. In A. Hassanien, & D. Oliva (Eds.) Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_14.
  10. 10.
    Abdeldaim A. M., Sahlol A. T., Elhoseny M., & Hassanien A. E. (2018). Computer-aided acute lymphoblastic Leukemia diagnosis system based on image analysis. In: A. Hassanien, D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9.
  11. 11.
    Abbas, H. (2014). Future SCADA challenges and the promising solution: The agent-based SCADA. International Journal of Critical Infrastructures, 10(3/4), 307–333.CrossRefGoogle Scholar
  12. 12.
    Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, PP(99).  https://doi.org/10.1109/ACCESS.2018.2817615.
  13. 13.
    Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., & Hou, G. (2018). Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6(1), 10269–10278.  https://doi.org/10.1109/ACCESS.2018.2799240.CrossRefGoogle Scholar
  14. 14.
    Farouk, A., Batle, J., Elhoseny, M., Naseri, M., Lone, M., Fedorov, A., Alkhambashi, M., Ahmed, S. H., & Abdel-Aty, M. (2018). Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Frontiers of Physics, 13, 130306. Springer.  https://doi.org/10.1007/s11467-017-0717-3.
  15. 15.
    Elhoseny, M., Elkhateb, A., Sahlol, A., & Hassanien, A. E. (2018). Multimodal biometric personal identification and verification. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_12.
  16. 16.
    Elhoseny, M., Essa, E., Elkhateb, A., Hassanien, A. E., & Hamad, A. (2018). Cascade multimodal biometric system using fingerprint and Iris patterns. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_55.
  17. 17.
    Wu, T., Disso, J. F. P., Jones, K., & Campos, A. (2013). Towards a SCADA forensics architecture. In Proceedings of the 1st international symposium for ICS and SCADA cyber security research, (pp. 12–21).Google Scholar
  18. 18.
    Spyridopoulos, T., Tryfonas, T., & May, J. (2014). Incident analysis & digital forensics in SCADA and industrial control systems. In 8th IET international system safety conference incorporating the cyber security. IEEE.Google Scholar
  19. 19.
    Pedro, N. (2013). SCADA live forensics: real time data acquisition process to detect, prevent, or evaluate critical situations. In 1st annual international interdisciplinary conference, (pp. 24–26).Google Scholar
  20. 20.
    Tharwat, A., Mahdi, H., Elhoseny, M., & Hassanien, A. E. (2018). Recognizing human activity in mobile crowdsensing environment using optimized k-NN algorithm. Expert Systems With Applications.  https://doi.org/10.1016/j.eswa.2018.04.017. Accessed 12 April 2018.CrossRefGoogle Scholar
  21. 21.
    Tharwat, A., Elhoseny, M., Hassanien, A. E., Gabel, T., & Kumar, A. (2018). Intelligent Bezir curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Computing, (pp. 1–22). Springer.  https://doi.org/10.1007/s10586-018-2360-3.
  22. 22.
    Sarvaghad-Moghaddam, M., Orouji, A. A., Ramezani, Z., Elhoseny, M., & Farouk, A. (2018). Modelling the spice parameters of SOI MOSFET using a combinational algorithm. Cluster Computing. Springer.  https://doi.org/10.1007/s10586-018-2289-6. (in Press).
  23. 23.
    Rizk-Allah, R. M., Hassanien, A. E., & Elhoseny, M. (2018). A multi-objective transportation model under neutrosophic environment. Computers and Electrical Engineering. Elsevier.  https://doi.org/10.1016/j.compeleceng.2018.02.024. (in Press).
  24. 24.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., & Elhoseny, M. (2017). Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities. Physical Review A, 95(3), 032123.  https://doi.org/10.1103/PhysRevA.95.032123.
  25. 25.
    El Aziz, M. A., Hemdan, A. M., Ewees, A. A., Elhoseny, M., Shehab, A., Hassanien, A. E., & Xiong, S. (2017). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In IEEE PES PowerAfrica conference, (pp. 115–120), June 27–30, 2017. Accra-Ghana: IEEE.  https://doi.org/10.1109/PowerAfrica.2017.7991209.
  26. 26.
    Ewees, A. A., El Aziz, M. A., & Elhoseny, M. (2017) Social-spider optimization algorithm for improving ANFIS to predict biochar yield. In 8th International conference on computing, communication and networking technologies (8ICCCNT), July 3–5. Delhi-India: IEEE.Google Scholar
  27. 27.
    Metawa, N., Elhoseny, M., Hassan, M. K., & Hassanien, A. E. (2016). Loan portfolio optimization using genetic algorithm: A case of credit constraints. In Proceedings of 12th international computer engineering conference (ICENCO), (pp. 59–64). IEEE.  https://doi.org/10.1109/ICENCO.2016.7856446.
  28. 28.
    Elhoseny, M., Farouk, A., Batle, J., Shehab, A., & Hassanien, A. E. (2017). Secure image processing and transmission schema in cluster-based wireless sensor network. In Handbook of research on machine learning innovations and trends, Chapter 45, pp. 1022–1040, IGI Global, 2017.  https://doi.org/10.4018/978-1-5225-2229-4.ch045.
  29. 29.
    Elhoseny, M., Elleithy, K., Elminir, H., Yuan, X., & Riad, A. (2015). Dynamic clustering of heterogeneous wireless sensor networks using a genetic algorithm towards balancing energy exhaustion. International Journal of Scientific & Engineering Research, 6(8), 1243–1252.Google Scholar
  30. 30.
    Yuan, X., Elhoseny, M., El-Minir, H., & Riad, A. (2017). A genetic algorithm-based, dynamic clustering method towards improved wsn longevity. Journal of Network and Systems Management, 25(1), 21–46.CrossRefGoogle Scholar
  31. 31.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H., & Riad, A. (2015). Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Communications Letters, 19(12), 2194–2197. IEEE.  https://doi.org/10.1109/LCOMM.2014.2381226.CrossRefGoogle Scholar
  32. 32.
    Elhoseny, M., Tharwat, A., Yuan, X., & Hassanien, A. E. (2018). Optimizing K-coverage of mobile WSNs. Expert Systems with Applications, 92, 142–153. Elsevier.  https://doi.org/10.1016/j.eswa.2017.09.008.CrossRefGoogle Scholar
  33. 33.
    Elhoseny, M., Tharwat, A., Farouk, A., & Hassanien, A. E. (2017). K-coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sensors Letters, 1(4), 1–4. IEEE.  https://doi.org/10.1109/LSENS.2017.2724846.CrossRefGoogle Scholar
  34. 34.
    Elhoseny, M., Farouk, A., Zhou, N., Wang, M. M., Abdalla, S., & Batle, J. (2017). Dynamic multi-hop clustering in a wireless sensor network: Performance improvement. Wireless Personal Communications, 95(4), 3733–3753. Springer.  https://doi.org/10.1007/s11277-017-4023-8.CrossRefGoogle Scholar
  35. 35.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. (2014). Extending self-organizing network availability using genetic algorithm. In International Conference on Computing, Communication and Networking Technologies (ICCCNT), (pp. 1–6). IEEE.Google Scholar
  36. 36.
    Yuan, X., Elhoseny, M., El-Minir, H. K., & Riad, A. M. (2017). A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. Journal of Network and Systems Management, 25(1), 21–46. Springer.  https://doi.org/10.1007/s10922-016-9379-7.CrossRefGoogle Scholar
  37. 37.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016b). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.Google Scholar
  38. 38.
    Elhoseny, M., Elminir, H., Riad, A., & Yuan, X. (2016a). A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. Journal of King Saud University-Computer and Information Sciences, 28(3), 262–275.CrossRefGoogle Scholar
  39. 39.
    Elsayed, W., Elhoseny, M., Riad, A., & Hassanien, A. E. (2017). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In International conference on advanced intelligent systems and informatics, (pp. 151–160). Springer.Google Scholar
  40. 40.
    Elsayed, W., Elhoseny, M., Sabbeh, S., & Riad, A. (2017). Self-maintenance model for wireless sensor networks. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.022. (in Press).
  41. 41.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13) 2024–2031.  https://doi.org/10.1002/sec.1459.
  42. 42.
    Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2018). Extended genetic algorithm for solving open-shop scheduling problem. Soft Computing.  https://doi.org/10.1007/s00500-018-3177-y.
  43. 43.
    Abbas, H. A. (2014). Exploiting the overlapping of higher order: Entities within multi-agent systems. International Journal of Agent Technologies and Systems (IJATS), 6(3), 32–57.CrossRefGoogle Scholar
  44. 44.
    Abbas, H. A. (2015). Realizing the NOSHAPE MAS Organizational model: An operational view. International Journal of Agent Technologies and Systems (IJATS), 7(2), 75–104.CrossRefGoogle Scholar
  45. 45.
    Abbas, H. A., Shaheen, S. I., & Amin, M. H. (2016). Self-adaptive large-scale SCADA system based on self-organised multi-agent systems. International Journal of Automation and Control, 10(3), 234266.CrossRefGoogle Scholar
  46. 46.
    Bellifemine, F., Poggi, A., & Rimassa, G. (1999). JADE: A FIPA-compliant agent framework. In Proceedings of the practical applications of intelligent agents and multi-agents, (pp. 97–108).Google Scholar
  47. 47.
    Foundation for Intelligent Physical Agents (FIPA) (2000) FIPA Agent Management Specification. http://www.fipa.org/specs/fipa00023/.
  48. 48.
    Moreno, A., Valls, A., & Viejo, A. (2003). Using JADE-LEAP to Implement Agents in Mobile Devices. http://jade.tilab.com/papers/EXP/02Moreno.pdf.
  49. 49.
    Braubach, L., Pokahr, A., Bade, D., Krempels, K. H., & Lamersdorf, W. (2004). Deployment of distributed multi-agent systems. In International workshop on engineering societies in the agents world, (pp. 261–276). Heidelberg: Springer.Google Scholar
  50. 50.
    Saqib, A., Anwar, R. W., Hussain, O. K., Ahmad, M., Ngadi, M. A., Mohamad, M. M., Malki, Z. O. H. A. I. R., Noraini, C., Jnr, B. A., Nor, R. N. H. & Murad, M. A. A. (2015). Cyber security for cyber physcial systems: a trust-based approach. Journal of theoretical and applied information technology, 71(2).Google Scholar
  51. 51.
    Neuman, C., & Tan, K. (2011). Mediating cyber and physical threat propagation in secure smart grid architectures. IEEE International Conference on Smart Grid Communications, 17–20, 238243.Google Scholar
  52. 52.
    Elhoseny, H., Elhoseny, M., Riad, A. M., Hassanien, A. E. (2018). A framework for big data analysis in smart cities. In A. Hassanien, M. Tolba, M. Elhoseny, M. Mostafa (Eds.), AMLTA 2018 the international conference on advanced machine learning technologies and applications (AMLTA2018). Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_40.CrossRefGoogle Scholar
  53. 53.
    Elhoseny M., Shehab A., & Osman L. (2018) An empirical analysis of user behavior for P2P IPTV workloads. In A. Hassanien, M. Tolba, M. Elhoseny, & M. Mostafa (Eds.) AMLTA 2018 The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer  https://doi.org/10.1007/978-3-319-74690-6_25.CrossRefGoogle Scholar
  54. 54.
    Wang, M. M., Qu, Z. G., Elhoseny, M. (2017). Quantum secret sharing in noisy environment. In X. Sun, H. C. Chao, X. You, & E. Bertino (Eds.) Cloud computing and security, ICCCS 2017. Lecture Notes in Computer Science, Vol. 10603. Cham: Springer.  https://doi.org/10.1007/978-3-319-68542-7_9.CrossRefGoogle Scholar
  55. 55.
    Elsayed, W., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_14.
  56. 56.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., Riad, A. M., & Hassanien, A. E. (2018). Intelligent algorithms for optimal selection of virtual machine in cloud environment, towards enhance healthcare services. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_27.
  57. 57.
    Shehab, A., Ismail, A., Osman, L., Elhoseny, M., El-Henawy, I. M. (2018). Quantified self using IoT wearable devices. In A. Hassanien, K. Shaalan, T. Gaber, M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_77.
  58. 58.
    Weyns, D., Helleboogh, A., & Holvoet, T. (2009). How to get multi-agent systems accepted in industry? International Journal of Agent-Oriented Software Engineering, 3(4), 383–390.CrossRefGoogle Scholar
  59. 59.
    Foundation For Intelligent Physical Agents (1997), Agent Communication Language, FIPA 97 Specification Part 2.Google Scholar
  60. 60.
    Annamalai, M., & Sterling, L. (2003). Guidelines for constructing reusable domain ontologies. In OAS, (pp. 71–74).Google Scholar
  61. 61.
    Ahmed, I., Obermeier, S., Naedele, M., & Richard III, G. G. (2012). SCADA systems: Challenges for forensic investigators. Computer, 45(12), 44–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computers and InformationMansoura UniversityDakahliaEgypt
  2. 2.Department of Information TechnologyCairo UniversityGizaEgypt

Personalised recommendations