Advertisement

An Encryption Model for Data Processing in WSN

  • Mohamed ElhosenyEmail author
  • Aboul Ella Hassanien
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 165)

Abstract

Building a secure routing protocol in WSN is not trivial process. It looks like an optimization process through which we try to find the optimum solution that maximize the network performance in an environment with a set of complicated constraints. The main purpose is not only to design new routing protocol that guarantee the network efficiency, but also balancing between this efficiency and the security requirements. For that purpose, we designed and followed a general framework to simplify the process of building such that protocol. In this chapter, an overview of the working steps towards building the proposed protocol is described. Then the protocol objectives and methodology are discussed.

References

  1. 1.
    Butun, I., Morgera, S. D., & Sankar, R. (2014). A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(1).CrossRefGoogle Scholar
  2. 2.
    Padmavathi, D. G., & Shanmugapriya, M. (2009). A survey of attacks and security mechanisms and challenges in wireless sensor networks. International Journal of Computer Science and Information Security, 4(1).Google Scholar
  3. 3.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H. K., & Riad, A. M. (2015). Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Communications Letters, PP(99), 1.Google Scholar
  4. 4.
    Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2018). Extended genetic algorithm for solving open-shop scheduling problem. Soft Computing.  https://doi.org/10.1007/s00500-018-3177-y.
  5. 5.
    Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, PP(99).  https://doi.org/10.1109/ACCESS.2018.2817615.
  6. 6.
    Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., & Hou, G. (2018). Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6(1), 10269–10278.  https://doi.org/10.1109/ACCESS.2018.2799240.CrossRefGoogle Scholar
  7. 7.
    Farouk, A., Batle, J., Elhoseny, M., Naseri, M., Lone, M., Fedorov, A., Alkhambashi, M., Ahmed, S. H., & Abdel-Aty, M., (2018). Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Frontiers of Physics, 13, 130306. Springer.  https://doi.org/10.1007/s11467-017-0717-3.
  8. 8.
    Elhoseny, M., Elkhateb, A., Sahlol, A., & Hassanien, A. E. (2018) Multimodal biometric personal identification and verification. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, vol 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_12.
  9. 9.
    Elhoseny, M., Essa, E., Elkhateb, A., Hassanien, A. E., & Hamad, A. (2018). Cascade multimodal biometric system using fingerprint and Iris patterns. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_55.
  10. 10.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016b). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.Google Scholar
  11. 11.
    Elhoseny, M., Elminir, H., Riad, A., & Yuan, X. (2016a). A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. Journal of King Saud University-Computer and Information Sciences, 28(3), 262–275.CrossRefGoogle Scholar
  12. 12.
    Elsayed, W., Elhoseny, M., Riad, A., & Hassanien, A. E. (2017). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In International conference on advanced intelligent systems and informatics, (pp. 151–160). Cham: Springer.Google Scholar
  13. 13.
    Elsayed, W., Elhoseny, M., Sabbeh, S., & Riad, A. (2017). Self-maintenance model for wireless sensor networks. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.022. (in Press).
  14. 14.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.  https://doi.org/10.1002/sec.1459.
  15. 15.
    Elhoseny, M., Farouk, A., Zhou, N., Wang, M., Abdalla, S., & Batle, J. (2017a). Dynamic multi-hop clustering in a wireless sensor network: Performance improvement. Wireless Personal Communications, 1–21.Google Scholar
  16. 16.
    Elhoseny, M., Tharwat, A., Farouk, A., & Hassanien, A. E. (2017b). K-coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sensors Letters, 1(4), 1–4.CrossRefGoogle Scholar
  17. 17.
    Elhoseny, M., Tharwat, A., Yuan, X., & Hassanien, A. E. (2018). Optimizing K-coverage of mobile WSNs. Expert Systems with Applications, 92, 142–153.  https://doi.org/10.1016/j.eswa.2017.09.008.CrossRefGoogle Scholar
  18. 18.
    Elhoseny, M., Farouk, A., Batle, J., Shehab, A., & Hassanien, A. E. (2017). Secure image processing and transmission schema in cluster-based wireless sensor network. In Handbook of research on machine learning innovations and trends, (Chapter 45, pp. 1022–1040), IGI Global.  https://doi.org/10.4018/978-1-5225-2229-4.ch045.
  19. 19.
    Elhoseny, Mohamed, Elleithy, Khaled, Elminir, Hamdi, Yuan, Xiaohui, & Riad, Alaa. (2015). Dynamic clustering of heterogeneous wireless sensor networks using a genetic algorithm towards balancing energy exhaustion. International Journal of Scientific & Engineering Research, 6(8), 1243–1252.Google Scholar
  20. 20.
    Yuan, X., Elhoseny, M., El-Minir, H., & Riad, A. (2017). A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. Journal of Network and Systems Management, 25(1), 21–46.CrossRefGoogle Scholar
  21. 21.
    Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications, 38, 185–201.CrossRefGoogle Scholar
  22. 22.
    Ahmed, G., Khan, N. M., & Ramer, R. (2008). Cluster head selection using evolutionary computing in wireless sensor networks. In Progress in electromagnetics research symposium, (pp. 883–886).Google Scholar
  23. 23.
    Bhaskar, N., Subhabrata, B., & Soumen, P. (2010). Genetic algorithm based optimization of clustering in ad-hoc networks. International Journal of Computer Science and Information Security, 7(1), 165–169.Google Scholar
  24. 24.
    Asim, M., & Mathur, V. (2013). Genetic algorithm based dynamic approach for routing protocols in mobile ad hoc networks. Journal of Academia and Industrial Research, 2(7), 437–441.Google Scholar
  25. 25.
    Karimi, A., Abedini, S., Zarafshan, F., & Al-Haddad, S. (2013). Cluster head selection using fuzzy logic and chaotic based genetic algorithm in wireless sensor network. Journal of Basic and Applied Scientific Research, 3(4), 694–703.Google Scholar
  26. 26.
    Elhoseny, M., Tharwat, A., & Hassanien, A. E. (2017c). Bezier curve based path planning in a dynamic field using modified genetic algorithm. Journal of Computational Science.  https://doi.org/10.1016/j.jocs.2017.08.004.
  27. 27.
    Metawa, N., Hassan, M. K., & Elhoseny, M. (2017). Genetic algorithm based model for optimizing bank lending decisions. Expert Systems with Applications, 80, 7582.  https://doi.org/10.1016/j.eswa.2017.03.021.CrossRefGoogle Scholar
  28. 28.
    Elhoseny, M., Shehab, A., & Yuan, X. (2017). Optimizing robot path in dynamic environments using genetic algorithm and bezier curve. Journal of Intelligent & Fuzzy Systems, 33(4), 2305–2316. IOS-Press.  https://doi.org/10.3233/JIFS-17348.CrossRefGoogle Scholar
  29. 29.
    Rana, K., & Zaveri, M. (2013). Synthesized cluster head selection and routing for two tier wireless sensor network. Journal of Computer Networks and Communications, 13(3).Google Scholar
  30. 30.
    Bayrakl, S., & Erdogan, S. (2012). Genetic algorithm based energy efficient clusters in wireless sensor networks. Procedia Computer Science, 10, 247–254.CrossRefGoogle Scholar
  31. 31.
    Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7), 1950–1957.CrossRefGoogle Scholar
  32. 32.
    Wu, Y., & Liu, W. (2013). Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wireless Sensor Systems, 3(2), 112–118.CrossRefGoogle Scholar
  33. 33.
    Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for energy efficient clusters in wireless sensor networks. In International conference on information technology.Google Scholar
  34. 34.
    Lotf, J. J., Hossein, S., & Ghazan, N. (2011). Overview on wireless sensor networks. Journal of Basic and Applied Scientific Research, 11(1), 2811–2816.Google Scholar
  35. 35.
    Lalitha, T., & Umarani, R. (2012). Energy efficient cluster based key management technique for wireless sensor network. International Journal of Advances in Engineering and Technology, 3(2), 186–190.Google Scholar
  36. 36.
    Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through snr based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422–429.CrossRefGoogle Scholar
  37. 37.
    Huang, L., Jie, L., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(3), 750–761.CrossRefGoogle Scholar
  38. 38.
    Xiao, W., Li, Y., & Ke, C. (2005). SLEACH secure lowenergy adaptive clustering hierarchy protocol for wireless sensor networks. Wuhan University Journal of Natural Sciences, 10(1), 127–131.CrossRefGoogle Scholar
  39. 39.
    Zhou, Q., Yang, G., & He, L. (2014). A secure enhanced data aggregation based on ECC in wireless sensor network. Sensors Journal, 14(4), 6701–6721.CrossRefGoogle Scholar
  40. 40.
    Girao, J., Westhoff, D., Mykletun, E., & Araki, T. (2007). TinyPEDS tiny persistent encrypted data storage in asynchronous wireless sensor networks. Ad Hoc Networks, 5(7), 1073–1089.CrossRefGoogle Scholar
  41. 41.
    Oliveira, L., Ferreira, A., Vilaca, M., Wong, H., Bern, M., Dahab, R., et al. (2007). Secleach-on the security of clustered sensor networks. Signal Processing, 87(12), 2882–2895.CrossRefGoogle Scholar
  42. 42.
    Boneh, D., Goh, E. J., & Nissim, K. (2005). Evaluating 2-DNF formulas on ciphertexts. In The 2nd international conference on theory of cryptography, (pp. 325–341).CrossRefGoogle Scholar
  43. 43.
    Mykletun, E., Girao, J., & Westhoff, D. (2006). Public key based cryptoschemes for data concealment in wireless sensor networks. In The IEEE international conference on communications, (pp. 2288–2295). Istanbul: IEEE.Google Scholar
  44. 44.
    Bogdanov, A., Khovratovich, D., & Rechberger, C. (2011). Biclique cryptanalysis of the full AES. Advances in Cryptology, 7073, 344–371.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Xiao-Jun, T., Zhu, W., & Ke, Z. (2012). A novel block encryption scheme based on chaos and an Sbox for WSNs. Journal of Chinese Physics, 21(2).Google Scholar
  46. 46.
    Eryümaz, E., Erturk, I., & Atmaca, S. (2009). Implementation of Skipjack cryptology algorithm for WSNs using FPGA. In International conference on application of information and communication technologies, (pp. 1–5). IEEE.Google Scholar
  47. 47.
    Biham, E., Biryukov, A., & Shamir, A. (2005). Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. Journal of Cryptology, 18(4), 291–311.MathSciNetCrossRefGoogle Scholar
  48. 48.
    Suzaki, T., Minematsu, K., Morioka, S., & Kobayashi, E. (2013). TWINE: a lightweight block cipher for multiple platforms. Selected Areas in Cryptography, 7707, 339–354.zbMATHGoogle Scholar
  49. 49.
    Karakoca, F., Demircia, H., & Harmancib, A. (2013). Biclique cryptanalysis of lblock and twine. Information Processing Letters, 113(12), 423–429.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Isobe, T., & Shibutani, K. (2012). Security analysis of the lightweight block ciphers XTEA and LED and Piccolo. Information Security and Privacy, 7372, 71–86.zbMATHGoogle Scholar
  51. 51.
    Biswas, K., Muthukkumarasamy, V., & Singh, K. (2015). An encryption scheme using chaotic map and genetic operations for wireless sensor networks. IEEE Sensors Journal, PP(99), 1.Google Scholar
  52. 52.
    Liu, Y., & Tian, S. (2012). Design and statistical analysis of a new chaos block cipher for WSN. Communications in Nonlinear Science and Numerical Simulation, 17(8), 3267–3278.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Saminathan, A., & Karthik, S. (2013). Development of an energyefficient and secure and reliable wireless sensor networks routing protocol based on data aggregation and user authentication. American Journal of Applied Sciences, 10(8), 832–843.CrossRefGoogle Scholar
  54. 54.
    Singh, M., & Hussain, M. (2010). A top-down hierarchical multi-hop secure routing protocol for wireless sensor networks. International Journal of Ad hoc and Sensor and Ubiquitous Computing, 1(2).Google Scholar
  55. 55.
    Elhoseny, M., Yuan, X., ElMinir, H., & Riad, A. (2014). Extending self-organizing network availability using genetic algorithm. In ICCCNT. China: Hefei.Google Scholar
  56. 56.
    Tharwat, A., Mahdi, H., Elhoseny, M., & Hassanien, A. E. (2018). Recognizing human activity in mobile crowdsensing environment using optimized k-NN algorithm. Expert Systems With Applications.  https://doi.org/10.1016/j.eswa.2018.04.017. Accessed 12 April 2018.CrossRefGoogle Scholar
  57. 57.
    Tharwat, A., Elhoseny, M., Hassanien, A. E., Gabel, T., & Kumar, A. (2018). Intelligent Bezir curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Computing, (pp. 1–22). Springer.  https://doi.org/10.1007/s10586-018-2360-3.
  58. 58.
    Rizk-Allah, R. M., Hassanien, A. E., & Elhoseny, M. (2018). A multi-objective transportation model under neutrosophic environment. Computers and Electrical Engineering. Elsevier.  https://doi.org/10.1016/j.compeleceng.2018.02.024. (in Press).
  59. 59.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., & Elhoseny, M. (2017). Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities. Physical Review A, 95(3), 032123.  https://doi.org/10.1103/PhysRevA.95.032123.
  60. 60.
    El Aziz, M. A., Hemdan, A. M., Ewees, A. A., Elhoseny, M., Shehab, A., Hassanien, A. E., & Xiong, S. (2017). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In 2017 IEEE PES PowerAfrica conference, (pp. 115–120), June 27–30, 2017. Accra-Ghana: IEEE.  https://doi.org/10.1109/PowerAfrica.2017.7991209.
  61. 61.
    Ewees, A. A., El Aziz, M. A., & Elhoseny, M. (2017). Social-spider optimization algorithm for improving ANFIS to predict biochar yield. In 8th International conference on computing, communication and networking technologies (8ICCCNT), July 3–5, 2017. Delhi-India: IEEE.Google Scholar
  62. 62.
    Metawa, N., Elhoseny, M., Hassan, M. K., & Hassanien, A. E. (2016). Loan portfolio optimization using genetic algorithm: A case of credit constraints. In Proceedings of 12th international computer engineering conference (ICENCO), (pp. 59–64). IEEE. https://doi.org/10.1109/ICENCO.2016.7856446.
  63. 63.
    Shehab, A., Elhoseny, M., El Aziz, M. A., & Hassanien, A. E. (2018). Efficient schemes for playout latency reduction in P2P-VoD systems. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_22.
  64. 64.
    Elhoseny M., Nabil A., Hassanien A. E., & Oliva, D. (2018). Hybrid rough neural network model for signature recognition. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_14.
  65. 65.
    Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computer-aided acute lymphoblastic Leukemia diagnosis system based on image analysis. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9.
  66. 66.
    Elhoseny, H., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). A framework for big data analysis in smart cities. In A. Hassanien, M. Tolba, M. Elhoseny, & M. Mostafa (Eds.), AMLTA 2018 the international conference on advanced machine learning technologies and applications (AMLTA2018). Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_40.CrossRefGoogle Scholar
  67. 67.
    Elhoseny, M., Shehab, A., & Osman, L. (2018). An empirical analysis of user behavior for P2P IPTV workloads. In A. Hassanien, M. Tolba, M. Elhoseny, & Mostafa M. (Eds.), AMLTA 2018 the international conference on advanced machine learning technologies and applications (AMLTA2018). Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_25.CrossRefGoogle Scholar
  68. 68.
    Wang, M. M., Qu, Z. G., & Elhoseny, M. (2017). Quantum secret sharing in noisy environment. In X. Sun, H. C. Chao, X. You, & E. Bertino (Eds.), Cloud computing and security, ICCCS 2017. Lecture Notes in Computer Science, Vol. 10603. Cham: Springer.  https://doi.org/10.1007/978-3-319-68542-7_9.CrossRefGoogle Scholar
  69. 69.
    Elsayed, W., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_14.
  70. 70.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., Riad, A. M., & Hassanien, A. E. (2018). Intelligent algorithms for optimal selection of virtual machine in cloud environment, towards enhance healthcare services. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_27.
  71. 71.
    Shehab A., Ismail A., Osman L., Elhoseny M., & El-Henawy I. M. (2018). Quantified self using IoT wearable devices. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_77.
  72. 72.
    Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid model of internet of things and cloud computing to manage big data in health services applications. Future Generation Computer Systems. Elsevier. (in Press).Google Scholar
  73. 73.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., & Riad, A. M. (2018). A machine learning model for improving healthcare services on cloud computing environment. Measurement, 119, 117–128.  https://doi.org/10.1016/j.measurement.2018.01.022.CrossRefGoogle Scholar
  74. 74.
    Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2017). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing. Springer.  https://doi.org/10.1007/s12652-017-0659-1.
  75. 75.
    Yuan, X., Li, D., Mohapatra, D., & Elhoseny, M. (2017). Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.026. (in Press).
  76. 76.
    Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., Elhoseny, M., & Baik, S. W. (2017). Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems. Elsevier.  https://doi.org/10.1016/j.future.2017.11.013.
  77. 77.
    Elhoseny, M., Hosny, A., Hassanien, A. E., Muhammad, K., & Sangaiah, A. K. (2017). Secure automated forensic investigation for sustainable critical infrastructures compliant with green computing requirements. IEEE Transactions on Sustainable Computing, PP(99).  https://doi.org/10.1109/TSUSC.2017.2782737.
  78. 78.
    Houssain, H., Badra, M., & Somani, T. (2012). Software implementations of elliptic curve cryptography in wireless sensor networks. Journal of Communication and Computer, 9, 712–720.Google Scholar
  79. 79.
    De Meulenaer, G., Gosset, F., Standaert, F. X., & Pereira, O. (2008). On the energy cost of communication and cryptography in wireless sensor networks. In IEEE international conference on wireless and mobile computing and networking and communications, (pp. 580–585). IEEE.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computers and InformationMansoura UniversityDakahliaEgypt
  2. 2.Department of Information TechnologyCairo UniversityGizaEgypt

Personalised recommendations