Advertisement

Secure Data Transmission in WSN: An Overview

  • Mohamed ElhosenyEmail author
  • Aboul Ella Hassanien
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 165)

Abstract

Building a secure routing protocol in WSN is not trivial process. Thee are two main types of security attacks against WSNs: active and passive. WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure data transmission schemes designed for data aggregation and transmission over a network, the limited resources and the complex environment make it invisible to be used with WSNs. Furthermore, secure data transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. This problem is mainly related to the limited resources and data processing capabilities. This chapter introduces a secure data processing and transmission schema in WSN. The chapter reviewed and critically discussed the most prominent secure clustering routing algorithms that have been developed for WSNs. Then, we explained the guidelines and the steps towards building a simple solution for securing the dynamic cluster network while consuming as little energy as possible and is adapted to a low computing power. Moreover, four phased towards building a secure clustering algorithm for WSN are proposed. These phases are secure cluster head selection, secure cluster formation, secure data aggregation by the cluster head from its cluster nodes, and secure data routing to the base station. Also, the chapter proposes and applies an evaluation criteria for the existing secure clustering algorithms.

References

  1. 1.
    Yuan, X., Li, D., Mohapatra, D., & Elhoseny, M. (2017). Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.026. (in Press).
  2. 2.
    Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., Elhoseny, M., & Baik, S. W. (2017). Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems. Elsevier.  https://doi.org/10.1016/j.future.2017.11.013.
  3. 3.
    Shehab, A., Elhoseny, M., El Aziz, M. A., & Hassanien, A. E. (2018). Efficient schemes for playout latency reduction in P2P-VoD systems. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in computational intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_22.
  4. 4.
    Elhoseny, M., Nabil, A., Hassanien, A. E., & Oliva, D. (2018). Hybrid rough neural network model for signature recognition. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in computational intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_14.
  5. 5.
    Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computer-aided acute lymphoblastic Leukemia diagnosis system based on image analysis. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in computational intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9.
  6. 6.
    Elhoseny, H., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). A framework for big data analysis in smart cities. In: A. Hassanien, M. Tolba, M. Elhoseny, & M. Mostafa (Eds.), AMLTA 2018 the international conference on advanced machine learning technologies and applications (AMLTA2018), Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_40.CrossRefGoogle Scholar
  7. 7.
    Elhoseny, M., Shehab, A., & Osman, L. (2018). An empirical analysis of user behavior for P2P IPTV workloads. In: A. Hassanien, M. Tolba, M. Elhoseny, & M. Mostafa (Eds.), AMLTA 2018 the international conference on advanced machine learning technologies and applications (AMLTA2018), Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_25.CrossRefGoogle Scholar
  8. 8.
    Wang, M. M., Qu, Z. G., & Elhoseny, M. (2017). Quantum secret sharing in noisy environment. In X. Sun, H. C. Chao, X. You, & E. Bertino (Eds.), Cloud computing and security, ICCCS 2017. Lecture Notes in Computer Science, Vol. 10603. Cham: Springer.  https://doi.org/10.1007/978-3-319-68542-7_9.CrossRefGoogle Scholar
  9. 9.
    Elsayed, W., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017, Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_14.
  10. 10.
    Shehab, A., Ismail, A., Osman, L., Elhoseny, M., & El-Henawy, I. M. (2017). Quantified self using IoT wearable devices. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017, Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_77.Google Scholar
  11. 11.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016b). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.Google Scholar
  12. 12.
    Elhoseny, M., Elminir, H., Riad, A., & Yuan, X. (2016a). A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. Journal of King Saud University-Computer and Information Sciences, 28(3), 262–275.CrossRefGoogle Scholar
  13. 13.
    Elsayed, W., Elhoseny, M., Riad, A., & Hassanien, A. E. (2017). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In International conference on advanced intelligent systems and informatics, (pp. 151–160). Springer.Google Scholar
  14. 14.
    Elsayed, W., Elhoseny, M., Sabbeh, S., & Riad, A. (2017). Self-maintenance model for wireless sensor networks. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.022. (in Press).
  15. 15.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.  https://doi.org/10.1002/sec.1459.
  16. 16.
    Tharwat, A., Mahdi, H., Elhoseny, M., & Hassanien, A. E. (2018). Recognizing human activity in mobile crowdsensing environment using optimized k-NN algorithm. Expert Systems With Applications.  https://doi.org/10.1016/j.eswa.2018.04.017. Accessed 12 April 2018.CrossRefGoogle Scholar
  17. 17.
    Tharwat, A., Elhoseny, M., Hassanien, A. E., Gabel, T., & Kumar, A. (2018). Intelligent Bezir curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Computing, (pp. 1–22). Springer.  https://doi.org/10.1007/s10586-018-2360-3.
  18. 18.
    Sarvaghad-Moghaddam, M., Orouji, A. A., Ramezani, Z., Elhoseny, M., & Farouk, A. (2018). Modelling the spice parameters of SOI MOSFET using a combinational algorithm. Cluster Computing. Springer.  https://doi.org/10.1007/s10586-018-2289-6. (in Press).
  19. 19.
    Rizk-Allah, R. M., Hassanien, A. E., & Elhoseny, M. (2018). A multi-objective transportation model under neutrosophic environment. Computers and Electrical Engineering. Elsevier.  https://doi.org/10.1016/j.compeleceng.2018.02.024.
  20. 20.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., & Elhoseny, M. (2017). Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities. Physical Review A, 95(3), 032123.  https://doi.org/10.1103/PhysRevA.95.032123.
  21. 21.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. (2014). Extending self-organizing network availability using genetic algorithm. In International conference on computing, communication and networking technologies (ICCCNT), (pp. 1–6). IEEE.Google Scholar
  22. 22.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H., & Riad, A. (2015). Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Communications Letters, 19(12), 2194–2197.CrossRefGoogle Scholar
  23. 23.
    El Aziz, M. A., Hemdan, A. M., Ewees, A. A., Elhoseny, M., Shehab, A., Hassanien, A. E., & Xiong, S. (2017). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In 2017 IEEE PES PowerAfrica conference, June 27–30, Accra-Ghana, pp. 115–120. IEEE.  https://doi.org/10.1109/PowerAfrica.2017.7991209.
  24. 24.
    Ewees, A. A., El Aziz, M. A., & Elhoseny, M. (2017). Social-spider optimization algorithm for improving ANFIS to predict biochar yield. In 8th International conference on computing, communication and networking technologies (8ICCCNT), July 3–5. Delhi-India: IEEE.Google Scholar
  25. 25.
    Metawa, N., Elhoseny, M., Hassan, M. K., & Hassanien, A. E. (2016). Loan portfolio optimization using genetic algorithm: A case of credit constraints. In Proceedings of 12th International Computer Engineering Conference (ICENCO), (pp. 59–64). IEEE.  https://doi.org/10.1109/ICENCO.2016.7856446.
  26. 26.
    Elhoseny, M., Farouk, A., Zhou, N., Wang, M., Abdalla, S., & Batle, J. (2017a). Dynamic multi-hop clustering in a wireless sensor network: Performance improvement. Wireless Personal Communications, 1–21.Google Scholar
  27. 27.
    Elhoseny, M., Tharwat, A., Farouk, A., & Hassanien, A. E. (2017b). K-coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sensors Letters, 1(4), 1–4.CrossRefGoogle Scholar
  28. 28.
    Elhoseny, M., Tharwat, A., Yuan, X., & Hassanien, A. E. (2018). Optimizing K-coverage of mobile WSNs. Expert Systems with Applications, 92, 142–153.  https://doi.org/10.1016/j.eswa.2017.09.008.CrossRefGoogle Scholar
  29. 29.
    Elhoseny, M., Farouk, A., Batle, J., Shehab, A., & Hassanien, A. E. (2017). Secure image processing and transmission schema in cluster-based wireless sensor network. In Handbook of research on machine learning innovations and trends, Chapter 45, pp. 1022–1040, IGI Global.  https://doi.org/10.4018/978-1-5225-2229-4.ch045.
  30. 30.
    Elhoseny, M., Elleithy, K., Elminir, H., Yuan, X., & Riad, A. (2015). Dynamic clustering of heterogeneous wireless sensor networks using a genetic algorithm towards balancing energy exhaustion. International Journal of Scientific & Engineering Research, 6(8), 1243–1252.Google Scholar
  31. 31.
    Yuan, X., Elhoseny, M., El-Minir, H., & Riad, A. (2017). A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. Journal of Network and Systems Management, 25(1), 21–46.CrossRefGoogle Scholar
  32. 32.
    Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications, 38, 185–201.CrossRefGoogle Scholar
  33. 33.
    Ahmed, G., Khan, N. M., & Ramer, R. (2008). Cluster head selection using evolutionary computing in wireless sensor networks. In Progress in electromagnetics research symposium, (pp. 883–886).Google Scholar
  34. 34.
    Asim, M., & Mathur, V. (2013). Genetic algorithm based dynamic approach for routing protocols in mobile ad hoc networks. Journal of Academia and Industrial Research, 2(7), 437–441.Google Scholar
  35. 35.
    Bhaskar, N., Subhabrata, B., & Soumen, P. (2010). Genetic algorithm based optimization of clustering in ad-hoc networks. International Journal of Computer Science and Information Security, 7(1), 165–169.Google Scholar
  36. 36.
    Karimi, A., Abedini, S., Zarafshan, F., & Al-Haddad, S. (2013). Cluster head selection using fuzzy logic and chaotic based genetic algorithm in wireless sensor network. Journal of Basic and Applied Scientific Research, 3(4), 694–703.Google Scholar
  37. 37.
    Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2018). Extended genetic algorithm for solving open-shop scheduling problem. Soft Computing.  https://doi.org/10.1007/s00500-018-3177-y.
  38. 38.
    Rana, K., & Zaveri, M. (2013). Synthesized cluster head selection and routing for two tier wireless sensor network. Journal of Computer Networks and Communications, 13(3).Google Scholar
  39. 39.
    Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE AccessPP(99).  https://doi.org/10.1109/ACCESS.2018.2817615.
  40. 40.
    Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., & Hou, G. (2018). Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6(1), 10269–10278.  https://doi.org/10.1109/ACCESS.2018.2799240.CrossRefGoogle Scholar
  41. 41.
    Farouk, A., Batle, J., Elhoseny, M., Naseri, M., Lone, M., Fedorov, A., Alkhambashi, M., Ahmed, S. H., & Abdel-Aty, M. (2018). Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Frontiers of Physics, 13, 130306. Springer.  https://doi.org/10.1007/s11467-017-0717-3.
  42. 42.
    Elhoseny, M., Elkhateb, A., Sahlol, A., & Hassanien, A. E. (2018). Multimodal biometric personal identification and verification. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in computational intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_12.
  43. 43.
    Elhoseny, M., Essa, E., Elkhateb, A., Hassanien, A. E., & Hamad A. (2018). Cascade multimodal biometric system using fingerprint and Iris patterns. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017, Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_55.
  44. 44.
    Elhoseny, M., Tharwat, A., & Hassanien, A. E. (2017c). Bezier curve based path planning in a dynamic field using modified genetic algorithm. Journal of Computational Science.  https://doi.org/10.1016/j.jocs.2017.08.004.
  45. 45.
    Metawa, N., Hassan, M. K., & Elhoseny, M. (2017). Genetic algorithm based model for optimizing bank lending decisions. Expert Systems with Applications, 80, 75–82.  https://doi.org/10.1016/j.eswa.2017.03.021.CrossRefGoogle Scholar
  46. 46.
    Elhoseny, M., Shehab, A., & Yuan, X. (2017). Optimizing robot path in dynamic environments using genetic algorithm and Bezier curve. Journal of Intelligent & Fuzzy Systems, 33(4), 2305–2316. IOS-Press.  https://doi.org/10.3233/JIFS-17348.CrossRefGoogle Scholar
  47. 47.
    Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7), 1950–1957.CrossRefGoogle Scholar
  48. 48.
    Bayrakl, S., & Erdogan, S. (2012). Genetic algorithm based energy efficient clusters in wireless sensor networks. Procedia Computer Science, 10, 247–254.CrossRefGoogle Scholar
  49. 49.
    Wu, Y., & Liu, W. (2013). Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wireless Sensor Systems, 3(2), 112–118.CrossRefGoogle Scholar
  50. 50.
    Hussain, S., Matin, A., & Islam, O. (2007). Genetic algorithm for energy efficient clusters in wireless sensor networks. In International conference on information technology.Google Scholar
  51. 51.
    Butun, I., Morgera, S., & Sankar, R. (2014). A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(1),CrossRefGoogle Scholar
  52. 52.
    Padmavathi, G., & Shanmugapriya, D. (2009). A survey of attacks and security mechanisms and challenges in wireless sensor networks. International Journal of Computer Science and Information Security, 4(1).Google Scholar
  53. 53.
    Patel, M., & Aggarwal, A. (2013). Security attacks in wireless sensor networks: A survey. In International conference on intelligent systems and signal processing, (pp. 329–333).Google Scholar
  54. 54.
    Fuchsberger, A. (2005). Intrusion detection systems and intrusion prevention systems. Elsevier Journal Information Security, 10(3), 134–139.Google Scholar
  55. 55.
    Devi, C. D., & Santhi, B. (2013). Study on security protocols in wireless sensor networks. International Journal of Engineering and Technology, 5(5), 200–207.Google Scholar
  56. 56.
    Semary, A., & Abdel-Azim, M. (2013). New trends in secure routing protocols for wireless sensor networks. International Journal of Distributed Sensor Networks.Google Scholar
  57. 57.
    Zhang, M., Kermani, M., Raghunathan, A., & Jha, N. (2013). Energy-efficient and secure sensor data transmission using encompression. In International conference on VLSI design and the 12th international conference on embedded systems.Google Scholar
  58. 58.
    Singh, M., & Hussain, M. (2010). A top-down hierarchical multi-hop secure routing protocol for wireless sensor networks. International Journal of Ad hoc and Sensor and Ubiquitous Computing, 1(2).Google Scholar
  59. 59.
    Sandeep, E., Kusuma, S., & Kumar, B. (2014). A random key distribution based artificial immune system for security in wireless sensor networks. In IEEE international students’ conference on electronics, electrical and computer science.Google Scholar
  60. 60.
    Grgic, K., Zagar, D., & Krizanovic, V. (2013). Security in IPv6-based wireless sensor network precision agriculture example. In International conference on telecommunications, (pp. 79–86).Google Scholar
  61. 61.
    Oliveira, L., Ferreira, A., Vilaca, M., Wong, H., Bern, M., Dahab, R., et al. (2007). Secleach-on the security of clustered sensor networks. Signal Processing, 87(12), 2882–2895.CrossRefGoogle Scholar
  62. 62.
    Radhika, B., Raja, P., Joseph, C., & Reji, M. (2013). Node attribute behavior based intrusion detection in sensor networks. International Journal of Engineering and Technology, 5(5), 3692–3698.Google Scholar
  63. 63.
    Shanthini, B., & Swamynathan, S. (2012). Genetic- based biometric security system for wireless-sensor-based healthcare systems. In International conference on recent advances in computing and software systems, (pp. 180–184).Google Scholar
  64. 64.
    Sharma, S., & Jena, S. (2011). A survey on secure hierarchical routing protocols in wireless sensor networks. In International conference on communication, computing and security.Google Scholar
  65. 65.
    Lalitha, T., & Umarani, R. (2012). Energy efficient cluster based key management technique for wireless sensor network. International Journal of Advances in Engineering and Technology, 3(2), 186–190.Google Scholar
  66. 66.
    Schaffer, P., Farkas, K., HorvTh, A., Holczer, T., & ButtyN, L. (2012). Secure and reliable clustering in wireless sensor networks: A critical survey. The International Journal of Computer and Telecommunications Networking, 56(11), 2726–2741.Google Scholar
  67. 67.
    Alrajeh, N., Khan, S., & Shams, B. (2013b). Intrusion detection systems in wireless sensor networks: A review. International Journal of Distributed Sensor Networks.CrossRefGoogle Scholar
  68. 68.
    Alrajeh, N., Khan, S., Lloret, J., & Loo, J. (2013a). Secure routing protocol using cross layer design and energy harvesting in wireless sensor networks. International Journal of Distributed Sensor Networks.Google Scholar
  69. 69.
    Diop, A., Qi, Y., Wang, Q., & Hussain, S. (2013). An advanced survey on secure energy efficient hierarchical routing protocols in wireless sensor networks. International Journal of Computer Science Issues, 10(1).Google Scholar
  70. 70.
    Salehi, A., Razzaque, M., Naraei, P., & Farrokhtala, A. (2013). Security in wireless sensor networks: Issues and challanges. In IEEE international conference on space science and communication, (pp. 356–360).Google Scholar
  71. 71.
    Rifa-Pous, H., & Herrera-Joancomart, J. (2011). A fair and secure cluster formation process for ad hoc networks. Wireless Personal Communications, 56(3), 625–636.CrossRefGoogle Scholar
  72. 72.
    Wang, G., Kim, D., & Cho, G. (2012). A secure cluster formation scheme in wireless sensor networks. International Journal of Distributed Sensor Networks.CrossRefGoogle Scholar
  73. 73.
    Wu, D., Hu, G., & Ni, G. (2008). Research and improve on secure routing protocols in wireless sensor networks. In Fourth IEEE international conference on circuits and systems for communications, (pp. 853–856). IEEE.Google Scholar
  74. 74.
    Zhang, Y., & Xu, L. (2008). An efficient secure on-demand routing in clustered wireless ad hoc networks. In International conference on wireless communications, networking and mobile computing. IEEE.Google Scholar
  75. 75.
    Sahraoui, S., & Bouam, S. (2013). Secure routing optimization in hierarchical cluster-based wireless sensor networks. International Journal of Communication Networks and Information Security, 5(3).Google Scholar
  76. 76.
    Gawdan, I., Chow, C., Zia, T., & Sarhan, Q. (2011). A novel secure key management for hierarchical wireless sensor network. In Third conference on computational intelligence, modeling and simulation, (pp. 312–316). IEEE.Google Scholar
  77. 77.
    Kumar, S., & Jena, S. (2010). SCMRP: secure cluster based multipath routing protocol for wireless sensor networks. In Sixth international conference on wireless communication and sensor networks, (pp. 1–6). IEEE.Google Scholar
  78. 78.
    Ibriq, J., & Mahgoub, I. (2006). A secure hierarchical routing protocol for wireless sensor networks. In IEEE International conference on communication systems, (pp. 1–6). IEEE.Google Scholar
  79. 79.
    Kausar, F., Masood, A., & Hussain, S. (2008). An authenticated key management scheme for hierarchical wireless sensor work. Advances in Communication Systems and Electrical Engineering, 4, 85–98.CrossRefGoogle Scholar
  80. 80.
    Tubaishat, M., Yin, J., Panja, B., & Madria, S. (2004). A secure hierarchical model for sensor network. ACM Sigmod Record, 33(1), 7–13.CrossRefGoogle Scholar
  81. 81.
    Yin, J., & Madria, S. (2006). Secrout a secure routing protocol for sensor network. In IEEE International conference on advanced information networking and applications, Vol. 1.Google Scholar
  82. 82.
    Cheng, Y., & Agrawal, D. (2007). An improved key distribution mechanism for large scale hierarchical wireless sensor networks. Ad Hoc Networks, 5(1), 35–48.CrossRefGoogle Scholar
  83. 83.
    Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid model of internet of things and cloud computing to manage big data in health services applications. Future Generation Computer Systems. Elsevier. (in Press).Google Scholar
  84. 84.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., & Riad, A. M. (2018). A machine learning model for improving healthcare services on cloud computing environment. Measurement, 119, 117–128.  https://doi.org/10.1016/j.measurement.2018.01.022.CrossRefGoogle Scholar
  85. 85.
    Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2017). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing. Springer.  https://doi.org/10.1007/s12652-017-0659-1.
  86. 86.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., Riad, A. M., & Hassanien, A. E. (2018). Intelligent algorithms for optimal selection of virtual machine in cloud environment, towards enhance healthcare services. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), Proceedings of the international conference on advanced intelligent systems and informatics 2017, AISI 2017, Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_27.
  87. 87.
    Wang, L., Wang, C., & Liu, C. (2009). Optimal number of clusters in dense wireless sensor networks: A cross-layer approach. IEEE Transactions on Vehicular Technology, 58(2), 966–976.MathSciNetCrossRefGoogle Scholar
  88. 88.
    Zhong, C., Yinghong, M., Zhao, J., Lin, C., & Lu, X. (2014). Secure clustering and reliable multipath route discovering in wireless sensor networks. In Sixth international symposium on parallel architectures and algorithms and programming, pp. 130–134. IEEE.Google Scholar
  89. 89.
    Zhao, P., Xu, Y., & Nan, M. (2012). A hybrid key management scheme based on clustered wireless sensor networks. Wireless Sensor Network, 4, 197–201.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computers and InformationMansoura UniversityDakahliaEgypt
  2. 2.Department of Information TechnologyCairo UniversityGizaEgypt

Personalised recommendations