Advertisement

Mobile Object Tracking in Wide Environments Using WSNs

  • Mohamed ElhosenyEmail author
  • Aboul Ella Hassanien
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 165)

Abstract

Covering a specific field and transferring data to Base Station (BS) is a real defiance. Although there are extended efforts to build a routing protocol that avoids a high energy consumption, the dynamic nature and complex environments of most of WSN recent application makes building such protocol a big challenge. To avoid energy exhaustion, many machine learning algorithms are used to manage the network operations. We proposed a new model to optimize the coverage requirements in WSNs to provide continuous monitoring of specified targets for longest possible time with limited energy resources. Moreover, we allow sensor nodes to move to appropriate positions to collect environmental information. The proposed model is based on the continuous and variable speed movement of mobile sensors to keep all targets under their cover all times. To further prove that the proposed model is better than other related work, a set of experiments in different working environments and a comparison with the most related work are conducted.

References

  1. 1.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., & Riad, A. M. (2018). A machine learning model for improving healthcare services on cloud computing environment. Measurement, 119, 117–128.  https://doi.org/10.1016/j.measurement.2018.01.022.CrossRefGoogle Scholar
  2. 2.
    Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2017). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing. Springer.  https://doi.org/10.1007/s12652-017-0659-1.
  3. 3.
    Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid model of internet of things and cloud computing to manage big data in health services applications. Future Generation Computer Systems. Elsevier. (in Press, Accepted March 2018).Google Scholar
  4. 4.
    Elhoseny, M., Nabil, A., Hassanien, A. E., & Oliva, D. (2018). Hybrid rough neural network model for signature recognition. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_14.
  5. 5.
    Elhoseny, M., Tharwat, A., Farouk, A., & Hassanien, A. E. (2017b). K-coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sensors Letters, 1(4), 1–4.CrossRefGoogle Scholar
  6. 6.
    Elsayed, W., Elhoseny, M., Riad, A., & Hassanien, A. E. (2017). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In International conference on advanced intelligent systems and informatics, pp. 151–160. Springer.Google Scholar
  7. 7.
    Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., Elhoseny, M., & Baik, S. W. (2018). Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems. Elsevier.  https://doi.org/10.1016/j.future.2017.11.013.
  8. 8.
    Shehab, A., Elhoseny, M., El Aziz, M. A., & Hassanien, A. E. (2018) Efficient schemes for playout latency reduction in P2P-VoD systems. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_22.
  9. 9.
    Tuna, G., Gungor, V., Gulez, K., Hancke, G., & Gungor, V. (2013). Energy harvesting techniques for industrial wireless sensor networks. In G. P. Hancke & V. C. Gungor (Eds.),Industrial wireless sensor networks: applications, protocols, standards, and products, pp. 119–136.Google Scholar
  10. 10.
    Yuan, X., Li, D., Mohapatra, D., & Elhoseny, M. (2017). Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.026. (in Press).
  11. 11.
    Das, A., & Bruhadeshwar, B. (2013). A biometric-based user authentication scheme for heterogeneous wireless sensor networks. In 27th international conference on advanced information networking and applications workshops (WAINA), (pp. 291–296). IEEE.Google Scholar
  12. 12.
    Elhoseny, M., Hosny, A., Hassanien, A. E., Muhammad, K., & Sangaiah, A. K. (2017). Secure automated forensic investigation for sustainable critical infrastructures compliant with green computing requirements. IEEE Transactions on Sustainable Computing, PP(99).  https://doi.org/10.1109/TSUSC.2017.2782737.
  13. 13.
    Elhoseny, M., Tharwat, A., & Hassanien, A. E. (2017c). Bezier curve based path planning in a dynamic field using modified genetic algorithm. Journal of Computational Science.  https://doi.org/10.1016/j.jocs.2017.08.004.
  14. 14.
    Ferentinos, K., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70–81.CrossRefGoogle Scholar
  15. 15.
    Abdelaziz, A., Elhoseny, M., Salama, A. S., Riad, A. M., & Hassanien, A. E. (2018). Intelligent algorithms for optimal selection of virtual machine in cloud environment, towards enhance healthcare services. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), 2017 Proceedings of the international conference on advanced intelligent systems and informatics, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_27.
  16. 16.
    Elsayed, W., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). Autonomic self-healing approach to eliminate hardware faults in wireless sensor networks. In A. Hassanien, A. Shaalan, T. Gaber, & M. Tolba (Eds.), 2017 Proceedings of the international conference on advanced intelligent systems and informatics, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_14
  17. 17.
    Hackmann, G., Guo, W., Yan, G., Sun, Z., Lu, C., & Dyke, S. (2014). Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(1), 63–72.CrossRefGoogle Scholar
  18. 18.
    Hassanien, A. E., Tharwat, A., & Own, H. S. (2017). Computational model for Vitamin D deficiency using hair mineral analysis. Computational Biology and Chemistry.CrossRefGoogle Scholar
  19. 19.
    Shahin, M. K., Tharwat, A., Gaber, T., & Hassanien, A. E. (2017). A wheelchair control system using human-machine interaction: Single-modal and multimodal approaches. Journal of Intelligent Systems.Google Scholar
  20. 20.
    Shehab, A., Ismail, A., Osman, L., Elhoseny, M., & El-Henawy, I. M. (2018). Quantified self using IoT wearable devices. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.), 2017 Proceedings of the international conference on advanced intelligent systems and informatics, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_77.
  21. 21.
    Tharwat, A., Moemen, Y. S., & Hassanien, A. E. (2016b). A predictive model for toxicity effects assessment of biotransformed hepatic drugs using iterative sampling method. Scientific Reports, 6, 38660.CrossRefGoogle Scholar
  22. 22.
    Tharwat, A., Moemen, Y. S., & Hassanien, A. E. (2017). Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. Journal of Biomedical Informatics, 68, 132–149.CrossRefGoogle Scholar
  23. 23.
    Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9.
  24. 24.
    Elhoseny, H., Elhoseny, M., Riad, A. M., & Hassanien, A. E. (2018). A framework for big data analysis in smart cities. In A. Hassanien, M. Tolba, M. Elhoseny, & M. Mostafa (Eds.) AMLTA 2008 the international conference on advanced machine learning technologies and applications (AMLTA2018). Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_40.CrossRefGoogle Scholar
  25. 25.
    Elhoseny, M., Shehab, A., & Osman, L. (2018). An empirical analysis of user behavior for P2P IPTV workloads. In A. Hassanien, M. Tolba, M. Elhoseny, & M. Mostafa (Eds.), AMLTA 2008 the international conference on advanced machine learning technologies and applications (AMLTA2018). Advances in Intelligent Systems and Computing, Vol. 723. Cham: Springer.  https://doi.org/10.1007/978-3-319-74690-6_25.CrossRefGoogle Scholar
  26. 26.
    Gaber, T., Tharwat, A., Hassanien, A. E., & Snasel, V. (2016). Biometric cattle identification approach based on webers local descriptor and adaboost classifier. Computers and Electronics in Agriculture, 122, 55–66.CrossRefGoogle Scholar
  27. 27.
    Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRefGoogle Scholar
  28. 28.
    Tharwat, A., Gaber, T., & Hassanien, A. E. (2016a). One-dimensional vs. two-dimensional based features: Plant identification approach. Journal of Applied Logic.Google Scholar
  29. 29.
    Wang, M. M., Qu, Z. G., & Elhoseny, M. (2017). Quantum secret sharing in noisy environment. In X. Sun, H. C. Chao, X. You, & E. Bertino (Eds.), Cloud computing and security, ICCCS 2017. Lecture Notes in Computer Science, Vol. 10603. Cham: Springer.  https://doi.org/10.1007/978-3-319-68542-7_9.CrossRefGoogle Scholar
  30. 30.
    Cerulli, R., Donato, R. D., & Raiconi, A. (2012). Exact and heuristic methods to maximize network lifetime in wireless sensor networks with adjustable sensing ranges. European Journal of Operational Research, 220(1), 58–66.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Elhoseny, M., Yuan, X., El-Minir, H. K., Riad, A. (2014). Extending self-organizing network availability using genetic algorithm. In International conference on computing, communication and networking technologies (ICCCNT), (pp. pp. 1–6). IEEE.Google Scholar
  32. 32.
    Elhoseny, M., Elminir, H., Riad, A., & Yuan, X. (2016a). A secure data routing schema for wsn using elliptic curve cryptography and homomorphic encryption. Journal of King Saud University-Computer and Information Sciences, 28(3), 262–275.CrossRefGoogle Scholar
  33. 33.
    Elhoseny, M., Yuan, X., El-Minir, H. K., & Riad, A. M. (2016b). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.Google Scholar
  34. 34.
    Yang, Q., He, S., Li, J., Chen, J., & Sun, Y. (2015). Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Transactions on Vehicular Technology, 64(1), 367–377.CrossRefGoogle Scholar
  35. 35.
    Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2008). Extended genetic algorithm for solving open-shop scheduling problem. Soft Computing.  https://doi.org/10.1007/s00500-018-3177-y.
  36. 36.
    Elhoseny, M., Yuan, X., ElMinir, H. K., & Riad, A. M. (2016). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13): 2024–2031.  https://doi.org/10.1002/sec.1459.
  37. 37.
    Katsuma, R., Murata, Y., Shibata, N., Yasumoto, K., & Ito, M. (2009). Extending k-coverage lifetime of wireless sensor networks using mobile sensor nodes. In IEEE international conference on wireless and mobile computing, networking and communications, (pp. 48–54). IEEE.Google Scholar
  38. 38.
    Liu, Z. (2007). Maximizing network lifetime for target coverage problem in heterogeneous wireless sensor networks. In International conference on mobile Ad-Hoc and sensor networks, pp. 457–468. Springer.Google Scholar
  39. 39.
    Lu, Z., Li, W., & Pan, M. (2015). Maximum lifetime scheduling for target coverage and data collection in wireless sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 714–727.CrossRefGoogle Scholar
  40. 40.
    Elhoseny, M., Tharwat, A., Yuan, X., & Hassanien, A. E. (2018). Optimizing K-coverage of mobile WSNs. Expert Systems with Applications, 92, 142–153.  https://doi.org/10.1016/j.eswa.2017.09.008.CrossRefGoogle Scholar
  41. 41.
    Wan, X., Wu, J., & Shen, X. (2015). Maximal lifetime scheduling for roadside sensor networks with survivability. IEEE Transactions on Vehicular Technology, 64(11), 5300–5313.CrossRefGoogle Scholar
  42. 42.
    Tang, J., Zhu, B., Zhang, L., & Hincapie, R. (2011). Wakeup scheduling in roadside directional sensor networks. In Global telecommunications conference (GLOBECOM 2011), pp. 1–6. IEEE.Google Scholar
  43. 43.
    Mnasri, S., Thaljaoui, A., Nasri, N., & Val, T. (2015). A genetic algorithm-based approach to optimize the coverage and the localization in the wireless audio-sensors networks. In International symposium on networks, computers and communications (ISNCC), pp. 1–6. IEEE.Google Scholar
  44. 44.
    Yang, Q., & Gündüz, D. (2015). Variable-power scheduling for perpetual target coverage in energy harvesting wireless sensor networks. In International symposium on wireless communication systems (ISWCS), pp. 281–285. IEEE.Google Scholar
  45. 45.
    Han, G., Jiang, J., Zhang, C., Duong, T., Guizani, M., & Karagiannidis, G. (2016). A survey on mobile anchor node assisted localization in wireless sensor networks. IEEE Communications Surveys & Tutorials, 18(3), 2220–2243.CrossRefGoogle Scholar
  46. 46.
    Wang, R., Xu, B., Wei, R., Gu, H., & Chen, J. (2010). Design and implementation of an intelligent environmental monitoring system for animal house based on wireless sensor net (WSN)[j]. Jiangsu Journal of Agricultural Sciences, 3, 024.Google Scholar
  47. 47.
    Hwang, J., Shin, C., & Yoe, H. (2010). Study on an agricultural environment monitoring server system using wireless sensor networks. Sensors, 10(12), 11189–11211.CrossRefGoogle Scholar
  48. 48.
    Elhoseny, M., Elleithy, K., Elminir, H., Yuan, X., & Riad, A. (2015). Dynamic clustering of heterogeneous wireless sensor networks using a genetic algorithm towards balancing energy exhaustion. International Journal of Scientific & Engineering Research, 6(8), 1243–1252.Google Scholar
  49. 49.
    Fadel, E., Gungor, V., Nassef, L., Akkari, N., Malik, M., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.CrossRefGoogle Scholar
  50. 50.
    Rawat, P., Singh, K., Chaouchi, H., & Bonnin, J. (2014). Wireless sensor networks: a survey on recent developments and potential synergies. The Journal of supercomputing, 68(1), 1–48.CrossRefGoogle Scholar
  51. 51.
    Elhoseny, M., Elkhateb, A., Sahlol, A., & Hassanien, A. E. (2018). Multimodal biometric personal identification and verification. In A. Hassanien, & D. Oliva (Eds.), Advances in soft computing and machine learning in image processing. Studies in Computational Intelligence, Vol. 730. Cham: Springer.  https://doi.org/10.1007/978-3-319-63754-9_12.
  52. 52.
    Elhoseny, M., Essa, E., Elkhateb, A., Hassanien, A. E., & Hamad, A. (2018). Cascade multimodal biometric system using fingerprint and Iris patterns. In A. Hassanien, K. Shaalan, T. Gaber, & M. Tolba (Eds.) 2017 Proceedings of the international conference on advanced intelligent systems and informatics, AISI 2017. Advances in Intelligent Systems and Computing, Vol. 639. Cham: Springer.  https://doi.org/10.1007/978-3-319-64861-3_55.
  53. 53.
    Elhoseny, M., Ramírez-Gonz, G., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE AccessPP(99).  https://doi.org/10.1109/ACCESS.2018.2817615.
  54. 54.
    Farouk, A., Batle, J., Elhoseny, M., Naseri, M., Lone, M., Fedorov, A., Alkhambashi, M., Ahmed, S. H., & Abdel-Aty, M. (2018). Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Frontiers of Physics13 130306. Springer.  https://doi.org/10.1007/s11467-017-0717-3
  55. 55.
    Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., & Hou, G. (2018). Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6(1), pp. 10269–10278.  https://doi.org/10.1109/ACCESS.2018.2799240.CrossRefGoogle Scholar
  56. 56.
    Elhoseny, M., Shehab, A., & Yuan, X. (2017). Optimizing robot path in dynamic environments using genetic algorithm and Bezier curve. Journal of Intelligent & Fuzzy Systems, 334, 2305–2316. IOS-Press.  https://doi.org/10.3233/JIFS-17348.CrossRefGoogle Scholar
  57. 57.
    Metawaa, N., Kabir Hassana, M., & Elhoseny, M. (2017). Genetic algorithm based model for optimizing bank lending decisions. Expert Systems with Applications, 80, 75–82.  https://doi.org/10.1016/j.eswa.2017.03.02.CrossRefGoogle Scholar
  58. 58.
    Ebrahimian, N., Sheramin, G., Navin, A., & Foruzandeh, Z. (2010). A novel approach for efficient k-coverage in wireless sensor networks by using genetic algorithm. In International conference on computational intelligence and communication networks (CICN), (pp. 372–376). IEEE.Google Scholar
  59. 59.
    Elhoseny, M., Farouk, A., Zhou, N., Wang, M., Abdalla, S., & Batle, J. (2017a). Dynamic multi-hop clustering in a wireless sensor network: Performance improvement. Wireless Personal Communications, 1–21.Google Scholar
  60. 60.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H., & Riad, A. (2015). Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Communications Letters, 19(12), 2194–2197.CrossRefGoogle Scholar
  61. 61.
    Shieh, C., Sai, V., Lin, Y., Lee, T., Nguyen, T., & Le, Q. (2016). Improved node localization for WSN using heuristic optimization approaches. In International conference on networking and network applications (NaNA), pp. 95–98. IEEE.Google Scholar
  62. 62.
    Yuan, X., Elhoseny, M., El-Minir, H., & Riad, A. (2017). A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. Journal of Network and Systems Management, 25(1), 21–46.CrossRefGoogle Scholar
  63. 63.
    Berman, P., Calinescu, G., Shah, C., & Zelikovsky, A. (2004). Power efficient monitoring management in sensor networks. In Proceedings of the wireless communications and networking conference (WCNC), (Vol. 4, pp. 2329–2334). IEEE.Google Scholar
  64. 64.
    Cardei, M., & Du, D. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRefGoogle Scholar
  65. 65.
    Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In IEEE international conference on communications (ICC), 2, 472–476. IEEE.Google Scholar
  66. 66.
    Cardei, M., Thai, M., Li, Y., & Wu, W. (2005a). Energy-efficient target coverage in wireless sensor networks. In Proceedings IEEE 24th annual joint conference of the IEEE computer and communications societies, (Vol. 3, pp. 1976–1984). IEEE.Google Scholar
  67. 67.
    Cardei, M., Wu, J., Lu, M., & Pervaiz, M. (2005b). Maximum network lifetime in wireless sensor networks with adjustable sensing ranges. In Proceedings IEEE international conference on wireless and mobile computing, networking and communications, (WiMob’2005), (Vol. 3, pp. 438–445). IEEE.Google Scholar
  68. 68.
    Lu, M., Wu, J., Cardei, M., & Li, M. (2005). Energy-efficient connected coverage of discrete targets in wireless sensor networks. In: Networking and mobile computing, pp. 43–52. Springer.CrossRefGoogle Scholar
  69. 69.
    Liu, H., Wan, P., Yi, C., Jia, X., Makki, S., & Pissinou, N. (2005). Maximal lifetime scheduling in sensor surveillance networks. In Proceedings IEEE 24th annual joint conference of the IEEE computer and communications societies, (Vol. 4, pp. 2482–2491). IEEE.Google Scholar
  70. 70.
    Liu, H., Wan, P., & Jia, X. (2006). Maximal lifetime scheduling for k to 1 sensor-target surveillance networks. Computer Networks, 50(15), 2839–2854.CrossRefGoogle Scholar
  71. 71.
    Wang, X., Ma, J., Wang, S., & Bi, D. (2007). Distributed particle swarm optimization and simulated annealing for energy-efficient coverage in wireless sensor networks. Sensors, 7(5), 628–648.CrossRefGoogle Scholar
  72. 72.
    Mini, S., Udgata, S., & Sabat, S. (2011). Artificial bee colony based sensor deployment algorithm for target coverage problem in 3-D terrain. In International conference on distributed computing and internet technology, pp. 313–324. Springer.CrossRefGoogle Scholar
  73. 73.
    Huang, Y., & Li, K. (2013). Coverage optimization of wireless sensor networks based on artificial fish swarm algorithm. Jisuanji Yingyong Yanjiu, 30(2), 554–556.Google Scholar
  74. 74.
    Wang, G., Guo, L., Duan, H., Liu, L., & Wang, H. (2012). Dynamic deployment of wireless sensor networks by biogeography based optimization algorithm. Journal of Sensor and Actuator Networks, 1(2), 86–96.CrossRefGoogle Scholar
  75. 75.
    Maleki, I., Khaze, S., Tabrizi, M., & Bagherinia, A. (2013). A new approach for area coverage problem in wireless sensor networks with hybrid particle swarm optimization and differential evolution algorithms. International Journal of Mobile Network Communications & Telematics (IJMNCT), 3.Google Scholar
  76. 76.
    Elhoseny, M., Elminir, H., Riad, A. M., & Yuan, X. I. (2014). Recent advances of secure clustering protocols in wireless sensor networks. International Journal of Computer Networks and Communications Security, 2(11), 400–413.Google Scholar
  77. 77.
    Elsayed, W., Elhoseny, M., Sabbeh, S., & Riad, A. (2007). Self-maintenance model for wireless sensor networks. Computers and Electrical Engineering.  https://doi.org/10.1016/j.compeleceng.2017.12.022. (in Press).
  78. 78.
    Elhoseny, M., Farouk, A., Batle, J., Shehab, A., & Hassanien, A. E. (2017). Secure image processing and transmission schema in cluster-based wireless sensor network. In Handbook of research on machine learning innovations and trends, (Chapter 45, pp. 1022–1040), IGI Global.  https://doi.org/10.4018/978-1-5225-2229-4.ch045.
  79. 79.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., & Elhoseny, M. (2017). Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities. Physical Review A, 95(3), 032123.  https://doi.org/10.1103/PhysRevA.95.032123.
  80. 80.
    El Aziz, M. A., Hemdan, A. M., Ewees, A. A., Elhoseny, M., Shehab, A., Hassanien, A. E., & Xiong, S. (2017). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In 2017 IEEE PES PowerAfrica conference, (pp. 115–120), June 27–30, 2017, Accra-Ghana: IEEE.  https://doi.org/10.1109/PowerAfrica.2017.7991209.
  81. 81.
    Ewees, A. A., Aziz, M. A. E., & Elhoseny, M. (2007). Social-spider optimization algorithm for improving ANFIS to predict biochar yield. In 2017 8th international conference on computing, communication and networking technologies (8ICCCNT), July 3–5 2007. Delhi-India: IEEE.Google Scholar
  82. 82.
    Metawa, N., Elhoseny, M. Hassan, M. K., & Hassanien, A. E. (2006). Loan portfolio optimization using genetic algorithm: A case of credit constraints. In 2016 Proceedings of 12th international computer engineering conference (ICENCO), pp. 59–64. IEEE.  https://doi.org/10.1109/ICENCO.2016.7856446.
  83. 83.
    Rizk-Allah, R. M., Hassanien, A. E., & Elhoseny, M. (2018). A multi-objective transportation model under neutrosophic environment. Computers and Electrical Engineering. Elsevier.  https://doi.org/10.1016/j.compeleceng.2018.02.024. (in Press).
  84. 84.
    Tharwat, A., Elhoseny, M., Hassanien, A. E., Gabel, T., & Kumar, A. (2018). Intelligent Bezir curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Computing, 1–22. Springer.  https://doi.org/10.1007/s10586-018-2360-3.
  85. 85.
    Tharwat, A., Mahdi, H., Elhoseny, M., & Hassanien, A. E. (2008). Recognizing human activity in mobile crowdsensing environment using optimized kNN algorithm. Expert Systems With Applications.  https://doi.org/10.1016/j.eswa.2018.04.017. Accessed 12 April 2018.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computers and InformationMansoura UniversityDakahliaEgypt
  2. 2.Department of Information TechnologyCairo UniversityGizaEgypt

Personalised recommendations