The Green Computing Continuum: The OPERA Perspective

  • A. SciontiEmail author
  • O. Terzo
  • P. Ruiu
  • G. Giordanengo
  • S. Ciccia
  • G. Urlini
  • J. Nider
  • M. Rapoport
  • C. Petrie
  • R. Chamberlain
  • G. Renaud
  • D. Tsafrir
  • I. Yaniv
  • D. Harryvan


Cloud computing is an emerging paradigm in which users’ access to a shared pool of computing resources is dynamically allocated (i.e. ubiquitous computing service), depending on their specific needs. Such paradigm exploits the infrastructural capabilities of modern data centers to provide computational power and storage space required to satisfy modern application demands. The seamless integration of Cyber-Physical Systems (CPS) and Cloud infrastructures allows the effective processing of the huge amount of data collected by smart embedded systems, towards the creation of new services for the end users. However, trying to continuously increase data center capabilities comes at the cost of an increased energy consumption. The OPERA project aims at bringing innovative solutions to increase the energy efficiency of Cloud infrastructures, by leveraging on modular, high-density, heterogeneous and low-power computing systems, spanning data center servers and remote CPS. The effectiveness of the proposed solutions is demonstrated with key scenarios: a road traffic monitoring application, the deployment of a virtual desktop infrastructure, and the deployment of a compact data center on a truck.


Virtual Desktop Infrastructure (VDI) Improving Energy efficiencyEnergy Efficiency Cyber-physical Systems (CPS) OPERA Project Topology And Orchestration Specification For Cloud Applications (TOSCA) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the European Union H2020 program through the OPERA project (grant no. 688386).


  1. 1.
    David F, Jackson H, Sam G, Rajappa M, Anil K, Pinkesh S, Nagappan R (2008) Dynamic data center power management: trends, issues, and solutions. Intel Technol J 12(1)Google Scholar
  2. 2.
    Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40:33–37CrossRefGoogle Scholar
  3. 3.
    Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synthesis lectures on computer architecture 8(3):1–154Google Scholar
  4. 4.
    Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud: research problems in data center networks. In: ACM SIGCOMM computer communication review, vol 39, no 1. ACM, pp 68–73Google Scholar
  5. 5.
    Fan X, Weber W-D, Barroso LA (2007) Power provisioning for a warehouse-sized computer. In: ACM SIGARCH computer architecture news, vol 35. ACM, pp 13–23Google Scholar
  6. 6.
    Pearce M, Zeadally S, Hunt R (2013) Virtualization: issues, security threats, and solutions. In: ACM Computing Surveys (CSUR), vol 45, no 2. ACM, p 17Google Scholar
  7. 7.
    Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for cloud computing. In: Proceedings of the 2008 conference on Power aware computing and systems, vol 10Google Scholar
  8. 8.
    Vogels W (2008) Beyond server consolidation. Queue 6(1):20–26CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Kaur T, Chana I (2015) Energy efficiency techniques in cloud computing: a survey and taxonomy. In: ACM computing surveys (CSUR), vol 48, no 2. ACM, pp 22Google Scholar
  11. 11.
    Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Fut Gen Comput Syst (FGCS) 28(5):755–768CrossRefGoogle Scholar
  12. 12.
    Murtazaev A, Oh S (2011) Sercon: server consolidation algorithm using live migration of virtual machines for green computing. IETE Tech Rev 28(3):212–231CrossRefGoogle Scholar
  13. 13.
    Van HN, Tran FD, Menaud JM (2010) Performance and power management for cloud infrastructures. In: IEEE 3rd international conference on cloud computing (CLOUD). IEEE, pp 329–336Google Scholar
  14. 14.
    Zhang Q, Zhu Q, Boutaba R (2011) Dynamic resource allocation for spot markets in cloud computing environments. In: Fourth IEEE international conference on utility and cloud computing (UCC). IEEE, pp 178–185Google Scholar
  15. 15.
    Ardagna D, Panicucci B, Passacantando M (2011) A game theoretic formulation of the service provisioning problem in cloud systems. In: Proceedings of the 20th international conference on World wide web. ACM, pp 177–186Google Scholar
  16. 16.
    Quang-Hung N, Nien PD, Nam NH, Tuong NH, Thoai N (2013) A genetic algorithm for power-aware virtual machine allocation in private cloud. Informat Commun Technol. Springer, pp 183–191Google Scholar
  17. 17.
    Li L (2009) An optimistic differentiated service job scheduling system for cloud computing service users and providers. In: Third international conference on multimedia and ubiquitous engineering, MUE’09. IEEE, pp 295–299Google Scholar
  18. 18.
    Li K, Tang X, Li K (2014) Energy-efficient stochastic task scheduling on heterogeneous computing systems. In: IEEE transactions on parallel and distributed systems, vol 25, no 11. IEEE, pp 2867–2876Google Scholar
  19. 19.
    Ghribi C, Hadji M, Zeghlache D (2013) Energy efficient vm scheduling for cloud data centers: exact allocation and migration algorithms. In: 13th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid). IEEE, pp 671–678Google Scholar
  20. 20.
    Infrastructure—VMware (2006) Resource management with VMware DRS’. In: VMware WhitepaperGoogle Scholar
  21. 21.
    Shaobin Z, Hongying H (2012) Improved PSO-based task scheduling algorithm in cloud computing. J Informat Comput Sci 9(13):3821–3829Google Scholar
  22. 22.
    Liu Z, Wang X (2012) A PSO-based algorithm for load balancing in virtual machines of cloud computing environment. In: International conference in swarm intelligence. Springer, pp 142–147Google Scholar
  23. 23.
    Zhang H, Li P, Zhou Z, Yu X (2012) A PSO-based hierarchical resource scheduling strategy on cloud computing. In: International conference on trustworthy computing and services. Springer, pp 325–332Google Scholar
  24. 24.
    Gürsun G, Crovella M, Matta I (2011) Describing and forecasting video access patterns. In: Proceedings of IEEE INFOCOM. IEEE, pp 16–20Google Scholar
  25. 25.
    Tirado, JM, Higuero D, Isaila F, Carretero J (2011) Predictive data grouping and placement for cloud-based elastic server infrastructures. In: Proceedings of the 11th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE Computer Society, pp 285–294Google Scholar
  26. 26.
    Chandra A, Gong W, Shenoy P (2003) Dynamic resource allocation for shared data centers using online measurements. In: International Workshop on Quality of Service. Springer, pp 381–398Google Scholar
  27. 27.
    Kumar AS, Mazumdar S (2016) Forecasting HPC workload using ARMA models and SSA. In: Proceedings of the 15th IEEE conference on information technology (ICIT). IEEE, pp 1–4Google Scholar
  28. 28.
    Calheiros RN, Masoumi E, Ranjan R, Buyya R (2015) Workload prediction using arima model and its impact on cloud applications’ qos. In: IEEE transactions on cloud computing, vol 3, no 4. IEEE, pp 449–458Google Scholar
  29. 29.
    Iqbal W, Dailey MN, Carrera D, Janecek P (2011) Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Fut Generat Comput Syst vol 27, no 6. Elsevier, pp 871–879Google Scholar
  30. 30.
    Beloglazov A, Buyya R (2010) Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th international workshop on middleware for grids, clouds and e-science ACM. vol 4Google Scholar
  31. 31.
    Crago SP, Walters JP (2015) heterogeneous cloud computing: the way forward. IEEE Comput 48(1):59–61Google Scholar
  32. 32.
    Andrew C, Jongsok C, Mark A, Victor Z, Ahmed K, Tomasz C, Stephen DB, Anderson JH (2013) LegUp: an open-source high-level synthesis tool for FPGA-based processor/accelerator systems. ACM Trans Embed Comput Syst 13(2)Google Scholar
  33. 33.
    Villarreal J, Park A, Najjar W, Halstead R (2010) Designing modular hardware accelerators in C with ROCCC 2.0. In: 18th IEEE annual international symposium on field-programmable custom computing machines. IEEE, pp 127–134Google Scholar
  34. 34.
    Munshi A (2009) The OpenCL specification. In: IEEE hot chips 21 symposium (HCS), pp 1–314Google Scholar
  35. 35.
    Lavasani M, Angepat H, Chiou D (2014) An FPGA-based in-line accelerator for memcached. IEEE Comput Architect Lett 13(2)Google Scholar
  36. 36.
    Putnam A et al (2014) A reconfigurable fabric for accelerating large-scale datacenter services. In: ACM/IEEE 41st international symposium on computer architecture (ISCA). Minneapolis, MNGoogle Scholar
  37. 37.
    Becher A, Bauer F, Ziener D, Teich J (2014) Energy-aware SQL query acceleration through FPGA-based dynamic partial reconfiguration. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), MunichGoogle Scholar
  38. 38.
    Traber A et al (2016) PULPino: a small single-core RISC-V SoC. In: RISC-V workshopGoogle Scholar
  39. 39.
    Ickes N et al (2011) A 10 pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip. In: Proceedings of the ESSCIRC, HelsinkiGoogle Scholar
  40. 40.
  41. 41.
    Montella R, Ferraro C, Kosta S, Pelliccia V, Giunta G (2016) Enabling android-based devices to high-end GPGPUs. In: Algorithms and architectures for parallel processing (ICA3PP)—lecture notes in computer science, vol 10048. SpringerGoogle Scholar
  42. 42.
    Ciccia S et al (2015) Reconfigurable antenna system for wireless applications. In: IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI), Turin, pp 111–116Google Scholar
  43. 43.
    Evans D (2011) The internet of things how the next evolution of the internet is changing everything. In: CISCO white papersGoogle Scholar
  44. 44.
    Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in mobile computing. IEEE Pervas Comput 8(4):14–23Google Scholar
  45. 45.
    Vaquero LM, Rodero-Merino L (2014) Finding your way in the fog: towards a comprehensive definition of fog computing. In: ACM SIGCOMM Computer Communication Review, vol 44, no 5. ACM, pp 27–32Google Scholar
  46. 46.
    Willis DF, Dasgupta A, Banerjee S (2014) Paradrop: a multi-tenant platform for dynamically installed third party services on home gateways. In:Proceedings of the 2014 ACM SIGCOMM workshop on distributed cloud computing. ACM, pp 43–44Google Scholar
  47. 47.
    Martins J, Ahmed M, Raiciu C, Olteanu V, Honda M, Bifulco R, Huici F (2014) ClickOS and the art of network function virtualization. In: Proceedings of the 11th USENIX conference on networked systems design and implementation. USENIX Association, pp 459–473Google Scholar
  48. 48.
    Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A et al (2014) Mobile-edge computing introductory technical white paper. In: Mobile-edge Computing (MEC) industry initiative, white PaperGoogle Scholar
  49. 49.
    Hwang K, Dongarra J, Fox GC (2013) Distributed and cloud computing: from parallel processing to the internet of things. Morgan KaufmannGoogle Scholar
  50. 50.
  51. 51.
  52. 52.
  53. 53.
    Khronos Group The open standard for parallel programming of heterogeneous systems.
  54. 54.
    Stuecheli J, Blaner B, Johns CR, Siegel MS (2015) CAPI: a coherent accelerator processor interface. IBM J Res Developm 59(1)Google Scholar
  55. 55.
  56. 56.
    Thones J (2015) Microservices. IEEE Softw 32(1)Google Scholar
  57. 57.
    Organization for the Advancement of Structured Information Standards (2015) OASIS topology and orchestration specification for cloud applications (TOSCA)Google Scholar
  58. 58.
    Lefurgy C, Wang X, Ware M (2007) Server-level power control. In: Proceedings of the IEEE international conference on autonomic computing. IEEEGoogle Scholar
  59. 59.
    Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: IEEE international conference on cloud computing (CLOUD). IEEE, pp 500–507Google Scholar
  60. 60.
    Chieu TC, Mohindra A, Karve AA, Segal A (2009) Dynamic scaling of web applications in a virtualized cloud computing environment. In: IEEE international conference on e-Business engineering, ICEBE’09. IEEE, pp 281–286Google Scholar
  61. 61.
    Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: Proceedings of the 1st workshop on automated control for data centers and clouds. ACM, pp 13–18Google Scholar
  62. 62.
    Yaniv I, Dan T (2016) Hash, don’t cache (the page table). SigmetricsGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. Scionti
    • 1
    Email author
  • O. Terzo
    • 1
  • P. Ruiu
    • 1
  • G. Giordanengo
    • 1
  • S. Ciccia
    • 2
  • G. Urlini
    • 3
  • J. Nider
    • 4
  • M. Rapoport
    • 4
  • C. Petrie
    • 5
  • R. Chamberlain
    • 5
  • G. Renaud
    • 6
  • D. Tsafrir
    • 7
  • I. Yaniv
    • 7
  • D. Harryvan
    • 8
  1. 1.ISMBTorinoItaly
  2. 2.Politecnico di TorinoTorinoItaly
  3. 3.STMicroelectronicsMilanoItaly
  4. 4.IBM ResearchHaifaIsrael
  5. 5.Nallatech LtdGlasgowUK
  6. 6.HPEGrenobleIsrael
  7. 7.Technion–Israel Institute of TechnologyHaifaIsrael
  8. 8.CertiosDoetinchemThe Netherlands

Personalised recommendations