Skip to main content

Key Questions for Research and Conservation of Mesophotic Coral Ecosystems and Temperate Mesophotic Ecosystems

  • Chapter
  • First Online:
Book cover Mesophotic Coral Ecosystems

Abstract

Mesophotic coral ecosystems (MCEs) and temperate mesophotic ecosystems (TMEs) have received increasing research attention during the last decade as many new and improved methods and technologies have become more accessible to explore deeper parts of the ocean. However, large voids in knowledge remain in our scientific understanding, limiting our ability to make scientifically based decisions for conservation and management of these ecosystems. Here, we present a list of key research and conservation questions to enhance progress in the field. Questions were generated following an initial open call to MCE and TME experts, representing a range of career levels, interests, organizations (including academia, governmental, and nongovernmental), and geographic locations. Questions were refined and grouped into eight broad themes: (1) Distribution, (2) Environmental and Physical Processes, (3) Biodiversity and Community Structure, (4) Ecological Processes, (5) Connectivity, (6) Physiology, (7) Threats, and (8) Management and Policy. Questions were ranked within themes, and a workshop was used to discuss, refine, and finalize a list of 25 key questions. The 25 questions are presented as a guide for MCE and TME researchers, managers, and funders for future work and collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey E, Webster JM, Braga JC, Jacobsen GE, Thorogood G, Thomas AL, Camoin G, Reimer PJ, Potts DC (2013) Deglacial mesophotic reef demise on the Great Barrier Reef. Palaeogeogr Palaeoclimatol Palaeoecol 392:473–494

    Google Scholar 

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342

    CAS  Google Scholar 

  • Alonso D, Vides M, Cedeño C, Marrugo M, Henao A, Sánchez J, Dueñas L, Andrade J, González F, Gómez M (2015) Parque Nacional Natural Corales de Profundidad: descripción de comunidades coralinas y fauna asociada. Ser Publicaciones Especiales INVEMAR 88:1–20

    Google Scholar 

  • Andradi-Brown D, Laverick JH, Bejarano I, Bridge T, Colin PL, Eyal G, Jones RJ, Kahng SE, Reed JK, Smith TB (2016) Threats to mesophotic coral ecosystems and management options. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs. The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 67–82

    Google Scholar 

  • Andradi-Brown DA, Grey R, Hendrix A, Hitchner D, Hunt CL, Gress E, Madej K, Parry RL, Régnier-McKellar C, Jones OP, Arteaga M, Izaguirre AP, Rogers AD, Exton DA (2017) Depth-dependent effects of culling—do mesophotic lionfish populations undermine current management? R Soc Open Sci 4:170027

    PubMed  PubMed Central  Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2015) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Google Scholar 

  • Armstrong RA, Pizarro O, Roman C (2019) Underwater robotic technology for imaging mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 973–988

    Google Scholar 

  • Asher J, Williams ID, Harvey ES (2017) Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the Main Hawaiian Islands. Front Mar Sci 4:98

    Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curaçao and Bonaire. Coral Reefs 24:475–479

    Google Scholar 

  • Baker EK, Puglise KA, Harris PT (eds) (2016) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi

    Google Scholar 

  • Baldwin CC, Tornabene L, Robertson DR (2018) Below the mesophotic. Sci Rep 8:4920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballantine DL, Aponte NE (2003) An annotated checklist of deep-reef benthic marine algae from Lee Stocking Island, Bahamas (Western Atlantic), I. Chlorophyta and Heterokontophyta. Nova Hedwig 76:113–127

    Google Scholar 

  • Ballantine DL, Aponte NE (2005) An annotated checklist of deep-reef benthic marine algae from Lee Stocking Island, Bahamas (Western Atlantic) II. Rhodophyta. Nova Hedwig 80:147–171

    Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol 44:123–195

    Google Scholar 

  • Bejarano I, Appeldoorn RS, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33:313–328

    Google Scholar 

  • Bianchelli S, Pusceddu A, Canese S, Greco S, Danovaro R (2013) High meiofaunal and nematodes diversity around mesophotic coral oases in the Mediterranean Sea. PLoS ONE 8:e66553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the ‘deep reef refuge’ hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Google Scholar 

  • Bongaerts P, Muir P, Englebert N, Bridge TCL, Hoegh-Guldberg O (2013) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935–935

    Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3:e1602373

    PubMed  PubMed Central  Google Scholar 

  • Bradley CJ, Longenecker K, Pyle RL, Popp BN (2016) Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar Ecol Prog Ser 558:65–79

    CAS  Google Scholar 

  • Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Grinyó J, Lopez-Sanz A, Martinez-Quintana A, Pelejero C, Ziveri P, Rossi S (2013) Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Glob Chang Biol 19:1897–1908

    CAS  PubMed  Google Scholar 

  • Brandtneris VW, Brandt ME, Glynn PW, Gyory J, Smith TB (2016) Seasonal variability in calorimetric energy content of two Caribbean mesophotic corals. PLoS ONE 11:e0151953

    PubMed  PubMed Central  Google Scholar 

  • Brasileiro PS, Pereira-Filho GH, Bahia RG, Abrantes DP, Guimarães SMPB, Moura RL, Francini-Filho RB, Bastos AC, Amado-Filho GM (2015) Macroalgal composition and community structure of the largest rhodolith beds in the world. Mar Biodivers 46:407–420

    Google Scholar 

  • Brazeau DA, Lesser MP, Slattery M (2013) Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8:e65845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge T, Beaman R, Done T, Webster J (2012) Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE 7:e48203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Grech AM, Pressey RL (2016) Factors influencing incidental representation of previously unknown conservation features in marine protected areas. Conserv Biol 30:154–165

    PubMed  Google Scholar 

  • Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502–520

    Google Scholar 

  • Bruckner AW (2016) Advances in management of precious corals to address unsustainable and destructive harvest techniques. In: Goffredo S, Dubinsky Z (eds) The Cnidaria: past, present and future. Springer, Cham, pp 747–786

    Google Scholar 

  • Burdett HL, Donohue PJC, Hatton AD, Alwany MA, Kamenos NA (2013) Spatiotemporal variability of dimethylsulphoniopropionate on a fringing coral reef: the role of reefal carbonate chemistry and environmental variability. PLoS ONE 8:e64651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    CAS  PubMed  Google Scholar 

  • Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:1457

    PubMed  PubMed Central  Google Scholar 

  • Costantini F, Rossi S, Pintus E, Cerrano C, Gili J–M, Abbiati M (2011) Low connectivity and declining genetic variability along a depth gradient in Corallium rubrum populations. Coral Reefs 30:991–1003

    Google Scholar 

  • Crandall JB, Teece MA, Estes BA, Manfrino C, Ciesla JH (2016) Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J Exp Mar Biol Ecol 474:133–141

    CAS  Google Scholar 

  • Diario Oficial de la Federación (1998) Aviso por el que se informa al publico en general que la secretaria de medio ambiente, recursos naturales y pesca, ha concluido la elaboracion del programa de manejo del area natural protegida con el caracter de Parque Marino Nacional Arrecifes de Cozumel. https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/AvisoCozumel.pdf. Accessed 16 Mar 2018

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Google Scholar 

  • Einbinder S, Gruber DF, Salomon E, Liran O, Keren N, Tchernov D (2016) Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front Mar Sci 3:195

    Google Scholar 

  • English S, Wilkinson CR, Baker V (1997) Survey manual for tropical marine resources. Australian Institute of Marine Science, Townsville, 378 p

    Google Scholar 

  • Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T, Ben-Zvi O, Shaked Y, Smith TB, Harii S, Denis V, Noyes T, Tamir R, Loya Y (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10:e0128697

    PubMed  PubMed Central  Google Scholar 

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y (2016) Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci Rep 6:20964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzat L, Fine M, Maguer J-F, Grover R, Ferrier-Pagès C (2017) Carbon and nitrogen acquisition in shallow and deep holobionts of the scleractinian coral S. pistillata. Front Mar Sci 4:102

    Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Google Scholar 

  • Goldstein ED, D’Alessandro EK, Sponaugle S (2016) Demographic and reproductive plasticity across the depth distribution of a coral reef fish. Sci Rep 6:34077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodbody-Gringley G, Wong KH, Becker DM, Glennon K, de Putron SJ (2018) Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones. Coral Reefs 37(2):483–494

    Google Scholar 

  • Gori A, Viladrich N, Gili J-M, Kotta M, Cucio C, Magni L, Bramanti L, Rossi S (2012) Reproductive cycle and trophic ecology in deep versus shallow populations of the mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31:823–837

    Google Scholar 

  • Gress E, Andradi-Brown DA (2018) Assessing population changes of historically overexploited black corals (Order: Antipatharia) in Cozumel, Mexico. PeerJ 6:e5129

    PubMed  PubMed Central  Google Scholar 

  • Grigg RW (2001) Black coral: history of a sustainable fishery in Hawaiʻi. Pac Sci 55:291–299

    Google Scholar 

  • Grigg RW (2005) Depth limit for reef building corals in the AuʻAu channel, S.E. Hawaii. Coral Reefs 25:77–84

    Google Scholar 

  • Groves SH, Holstein DM, Enochs IC, Kolodzeij G, Manzello DP, Brandt ME, Smith TB (2018) Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37(2):345–354

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management.” Coral Reefs 29:247–251

    Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Smith TB, Paris CB (2016) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11:e0146068

    PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Fletcher P, Groves SH, Smith TB (2019) Ecosystem services of mesophotic coral ecosystems and a call for better accounting. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 943–956

    Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long–term decline of Caribbean corals. Ecology 81:2250–2263

    Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  • Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress–tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci 113:4416–4421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahng SE (2013) Growth rate for a zooxanthellate coral (Leptoseris hawaiiensis) at 90 m. J Coral Reef Stud 15:39–40

    Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Google Scholar 

  • Kane CN, Tissot BN (2017) Trophic designation and live coral cover predict changes in reef-fish community structure along a shallow to mesophotic gradient in Hawaii. Coral Reefs 36:891–901

    Google Scholar 

  • Kosaki RK, Pyle RL, Leonard JC, Hauk BB, Whitton RK, Wagner D (2017) 100% endemism in mesophotic reef fish assemblages at Kure Atoll, Hawaiian Islands. Mar Biodivers 47:783–784

    Google Scholar 

  • Krueck NC, Ahmadia GN, Green A, Jones GP, Possingham HP, Riginos C, Treml EA, Mumby PJ (2017) Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol Appl 27:925–941

    PubMed  Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photo acclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    PubMed  Google Scholar 

  • Lindfield SJ, Harvey ES, Halford AR, McIlwain JL (2015) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35:125–137

    Google Scholar 

  • Littler M, Littler D, Hanisak D (1991) Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J Exp Mar Biol Ecol 150:163–182

    Google Scholar 

  • Locker SD, Armstrong RA, Battista TA, Rooney JJ, Sherman C, Zawada DG (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29:329–345

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • McMahon KW, Thorrold SR, Houghton LA, Berumen ML (2016) Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180:809–821

    PubMed  Google Scholar 

  • Millennium Ecosystem Assessment [MEA] (2005) Ecosystems and human well–being: wetlands and water. World Resources Institute, Washington, DC

    Google Scholar 

  • Mitchell SJ, Doolette DJ (2013) Recreational technical diving part 1: an introduction to technical diving methods and activities. Diving Hyperb Med 43:86–93

    PubMed  Google Scholar 

  • Morsilli M, Bosellini FR, Pomar L, Hallock P, Aurell M, Papazzoni CA (2012) Mesophotic coral buildups in a prodelta setting (late Eocene, southern Pyrenees, Spain): a mixed carbonate–siliciclastic system. Sedimentology 59:766–794

    CAS  Google Scholar 

  • Muir P, Wallace C, Bridge TC, Bongaerts P (2015) Diverse staghorn coral fauna on the mesophotic reefs of north-east Australia. PLoS ONE 10:e0117933

    PubMed  PubMed Central  Google Scholar 

  • Muir PR, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef? Proc R Soc B Biol Sci 284:20171551

    Google Scholar 

  • Mumby PJ (2017) Embracing a world of subtlety and nuance on coral reefs. Coral Reefs 36:1003–1011

    Google Scholar 

  • Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem 3:34

    PubMed  PubMed Central  Google Scholar 

  • Ockendon N, Thomas DHL, Cortina J, Adams WM, Aykroyd T, Barov B, Boitani L, Bonn A, Branquinho C, Brombacher M, Burrell C, Carver S, Crick HQP, Duguy B, Everett S, Fokkens B, Fuller RJ, Gibbons DW, Gokhelashvili R, Griffin C, Halley DJ, Hotham P, Hughes FMR, Karamanlidis AA, McOwen CJ, Miles L, Mitchell R, Rands MRW, Roberts J, Sandom CJ, Spencer JW, ten Broeke E, Tew ER, Thomas CD, Timoshyna A, Unsworth RKF, Warrington S, Sutherland WJ (2018) One hundred priority questions for landscape restoration in Europe. Biol Conserv 221:198–208

    Google Scholar 

  • Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30

    CAS  PubMed  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    CAS  PubMed  Google Scholar 

  • Parsons ECM, Favaro B, Aguirre AA, Bauer AL, Blight LK, Cigliano JA, Coleman MA, Cote IM, Draheim M, Fletcher S, Foley MM, Jefferson R, Jones MC, Kelaher BP, Lundquist CJ, McCarthy J-B, Nelson A, Patterson K, Walsh L, Wright AJ, Sutherland WJ (2014) Seventy–one important questions for the conservation of marine biodiversity. Conserv Biol 28:1206–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shepherd B, Chequer AD, Rocha LA (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35:139–151

    Google Scholar 

  • Pochon X, Forsman ZH, Spalding HL, Padilla-Gamino JL, Smith CM, Gates RD (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawaiʻi. R Soc Open Sci 2:140351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pomponi SA, Diaz MC, RWM VS, Bell LJ, Busutil L, Gochfeld DJ, Kelly M, Slattery M (2019) Sponges. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 563–588

    Google Scholar 

  • Prada C, Hellberg ME (2013) Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc Natl Acad Sci 110:3961–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puglise KA, Colin PL (2016) Understanding mesophotic coral ecosystems: knowledge gaps for management. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs. The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 83–85

    Google Scholar 

  • Puglise K, Hinderstein L, Marr JCA, Dowgiallo M, Martinez F (2009) Mesophotic coral ecosystems research strategy: international workshop to prioritize research and management needs for mesophotic coral ecosystems, Jupiter, Florida, 12–15 July 2008, NOAA Technical Meorandum NOS NCCOS 98 and OAR OER 2. NOAA National Centers for Coastal Ocean Science and Office of Ocean Exploration and Research, Silver Spring, 24 p

    Google Scholar 

  • Pyle RL (1998) Use of advanced mixed-gas diving technology to explore the coral reef “Twilight Zone.” In: Ocean pulse. Springer, Boston, pp 71–88

    Google Scholar 

  • Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    PubMed  PubMed Central  Google Scholar 

  • Pyle RL, Kosaki RK, Pinheiro HT, Rocha LA, Whitton RK, Copus JM (2019) Fishes: biodiversity. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 749–777

    Google Scholar 

  • Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497

    PubMed  Google Scholar 

  • Reed JK, Farrington S, David A, Harter S, Pomponi S, Diaz MC, Voss JD, Spring KD, Hine AC, Kourafalou V, Smith RH, Vaz AC, Paris CB, Hanisak MD (2019) Pulley Ridge, Gulf of Mexico, USA. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 57–69

    Google Scholar 

  • Roder C, Berumen ML, Bouwmeester J, Papathanassiou E, Al-Suwailem A, Voolstra CR (2013) First biological measurements of deep-sea corals from the Red Sea. Sci Rep 3:2802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Tsounis G (2007) Temporal and spatial variation in protein, carbohydrate, and lipid levels in Corallium rubrum (anthozoa, octocorallia). Mar Biol 152:429–439

    CAS  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2016) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36(2):433–444

    Google Scholar 

  • Serrano X, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, Nunes FL, Baker AC (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240

    CAS  PubMed  Google Scholar 

  • Serrano XM, Baums IB, Smith TB, Jones RJ, Shearer TL, Baker AC (2016) Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 6:21619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman C, Nemeth M, Ruíz H, Bejarano I, Appeldoorn R, Pagán F, Schärer M, Weil E (2010) Geomorphology and benthic cover of mesophotic coral ecosystems of the upper insular slope of southwest Puerto Rico. Coral Reefs 29:347–360

    Google Scholar 

  • Sherman CE, Locker SD, Webster JM, Weinstein DK (2019) Geology and geomorphology. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 849–878

    Google Scholar 

  • Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41

    Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2015) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22(8):2756–2765

    Google Scholar 

  • Spalding H (2012) Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian Islands. Dissertation, University of Hawaiʻi at Mānoa

    Google Scholar 

  • Spalding HL, Conklin KY, Smith CM, O’Kelly CJ, Sherwood AR (2016) New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J Phycol 52:40–53

    PubMed  Google Scholar 

  • Spalding HL, Amado-Filho GM, Bahia RG, Ballantine DL, Fredericq S, Leichter JJ, Nelson WA, Slattery M, Tsuda RT (2019) Macroalgae. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 507–536

    Google Scholar 

  • Sutherland WJ, Fleishman E, Mascia MB, Pretty J, Rudd MA (2011) Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol Evol 2:238–247

    Google Scholar 

  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67

    Google Scholar 

  • Tenggardjaja KA, Bernardi G, Bowen BW (2014) Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS ONE 9:e115493

    PubMed  PubMed Central  Google Scholar 

  • Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, Bourne DG, Cantin N, Foret S, Matz M, Miller DJ, Moya A, Putnam HM, Ravasi T, van Oppen MJH, Thurber RV, Vidal-Dupiol J, Voolstra CR, Watson S-A, Whitelaw E, Willis BL, Munday PL (2017) Rapid adaptive responses to climate change in corals. Nat Clim Chang 7:627

    Google Scholar 

  • Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili J-M (2010) The exploitation and conservation of precious corals, vol 48. CRC Press, Boca Raton

    Google Scholar 

  • Turner JA, Babcock RC, Hovey R, Kendrick GA, Degraer S (2017) Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J Mar Sci 74:2309–2320

    Google Scholar 

  • Turner JA, Thomson DP, Cresswell AK, Trapon M, Babcock RC (2018) Depth-related patterns in coral recruitment across a shallow to mesophotic gradient. Coral Reefs 73(3):711–722

    Google Scholar 

  • van Oppen MJ, Bongaerts P, Underwood JN, Peplow LM, Cooper TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20:1647–1660

    PubMed  Google Scholar 

  • Vaz AC, Paris CB, Olascoaga MJ, Kourafalou VH, Kang H, Reed JK (2016) The perfect storm: match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys. Cont Shelf Res 125:136–146

    Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281(1789):20140846

    PubMed  PubMed Central  Google Scholar 

  • Weinstein DK, Smith TB, Klaus JS (2014) Mesophotic bioerosion: variability and structural impact on U.S. Virgin Island deep reefs. Geomorphology 222:14–24

    Google Scholar 

  • Weinstein DK, Klaus JS, McNeill DF (2015a) Syndepositional cementation in the reef ‘twilight zone.’ Reef Encount 30:53–56

    Google Scholar 

  • Weinstein DK, Klaus JS, Smith TB (2015b) Habitat heterogeneity reflected in mesophotic reef sediments. Sediment Geol 329:177–187

    CAS  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS, Smith TB, Giri SJ, Helmle KP (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Google Scholar 

  • White KN, Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, Naruse T, McClelland T, Denis V, Reimer JD (2013) Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ 1:e151. https://doi.org/10.7717/peerj.151

    Article  PubMed  PubMed Central  Google Scholar 

  • White KN, Weinstein DK, Ohara T, Denis V, Montenegro J, Reimer JD (2017) Shifting communities aftertyphoon damage on an upper mesophotic reef in Okinawa, Japan. PeerJ 5:e3573

    PubMed  PubMed Central  Google Scholar 

  • Woodall LC, Andradi-Brown DA, Brierley AS, Clark MR, Connelly D, Hall RA, Howell KL, Huvenne V, Linse K, Ross RE, Snelgrove P, Stefanoudis PV, Sutton TT, Taylor MW, Thornton TF, Rogers A (2018) A multidisciplinary approach for generating globally consistent data on mesophotic, deep-pelagic, and bathyal biological communities. Oceanography 31(3):76–89

    Google Scholar 

  • Ziegler M, Roder CM, Büchel C, Voolstra CR (2014) Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs 33:1115–1129

    Google Scholar 

  • Ziegler M, Roder CM, Buchel C, Voolstra CR (2015) Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci 2:4

    Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the organizers of ECRS 2017 for allowing us to host the workshop supporting this study at the conference. We also thank the following people for submitting/ranking questions and/or participating in the workshop: Marco Abbiati (University of Bologna); Amkieltiela (WWF-Indonesia); Russ Babcock (CSIRO); Yehuda (Hudi) Benayahu (Tel Aviv University); Or Ben-Zvi (Tel Aviv University); Marzia Bo (University of Genova); Lorenzo Bramanti (LECOB-CNRS); Patrick Cabaitan (University of the Philippines); Carlo Cerrano (Università Politecnica delle Marche); Martina Coppari (University of Genoa); Jill Darrell (Natural History Museum); Stephane De Palmas (Academia Sinica); Vianney Denis (National Taiwan University); Henry Duffy (Blue Ventures); Estradivari (WWF-Indonesia); Dan Exton (Operation Wallacea); Fikri Firmansyah (WWF-Indonesia); Sarah Groves (NOAA); Elizabeth Gugliotti (College of Charleston/NOAA); Alejandro Henao Castro (Colombia National Natural Parks System); Scott F. Heron (NOAA); Daniel Holstein (Louisiana State University); Kaleonani Hurley (University of Hawaiʻi); Nir Keren (HebrewU); Rebecca Klaus (Senckenberg Research Institute); Netanel Kramer (Tel Aviv University); Hedouin Laehtice (CRIOBE); Cristina Linares (University of Barcelona); Michelle Linklater (New South Wales Office of Environment and Heritage); Guy Marley (University of the West Indies); Catherine Mitchell (IMBRSEA); Benjamin Neal (Bigelow Lab); Stephanie A. Norman (Marine-Med: Marine Research, Epidemiology & Veterinary Medicine); Pamela Ortega (Coral Reef Alliance); Gonzalo Perez-Rosales Blanch (CRIOBE); Purwanto (University of Papua); Hanna Rapuano (Tel Aviv University); Marjorie L. Reaka (University of Maryland); Rebecca Rlao (Freelance); Ed Roberts (James Cook University); Brian Roy Rosen (Natural History Museum); Joana Ruela Boavida (Center of Marine Sciences, CCMAR); John W. Runcie (University of Sydney, Aquation Pty Ltd); Giovanni Santangelo (University of Pisa); Nick Schizas (University of Puerto Rico); Edy Setyawan (Independent researcher/consultant); Tom Shlesinger (Tel Aviv University); Paris Stefanoudis (Nekton Foundation); Michael Studivan (Florida Atlantic University); Raz Tamir (Tel Aviv University); Geogios Tsounis (California State University); Nuria Viladrich Canuda (CSIC Barcelona); Ernesto Weil (University of Puerto Rico); and Mikolaj Zapalski (University of Warsaw). Additionally JT, EG, and GE would like to thank ICRS for their student travel grants to attend the ECRS conference. JT would also like to acknowledge funding from BHP and the Ningaloo Outlook Program for their support. Lastly, we are grateful for thoughtful comments on this manuscript from nine reviewers (Sam Kahng, Yehuda Benayahu, Richard Appeldoorn, Heather Spalding, Anthony Montgomery, Shirley A. Pomponi, and three anonymous reviewers) and the editor Kimberly Puglise. GE has received funding for this project from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 796025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Turner .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table 52.S1

List of 131 unique questions classified by theme during Stage 2. (DOCX 28 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turner, J.A. et al. (2019). Key Questions for Research and Conservation of Mesophotic Coral Ecosystems and Temperate Mesophotic Ecosystems. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_52

Download citation

Publish with us

Policies and ethics