• Shirley A. PomponiEmail author
  • M. Cristina Diaz
  • Rob W. M. Van Soest
  • Lori J. Bell
  • Linnet Busutil
  • Deborah J. Gochfeld
  • Michelle Kelly
  • Marc Slattery
Part of the Coral Reefs of the World book series (CORW, volume 12)


Sponges are dominant, but poorly understood, components of mesophotic coral ecosystems (MCEs). Herein, we review the current understanding of mesophotic reef sponges focusing on their biodiversity, ecology, and threats, and comparing this to shallow reef sponges. The few studies of MCEs report a large number of new species, for which their contribution to ecosystem services and our understanding of sponge biodiversity and evolution are unknown. Major threats to MCE sponges are similar to threats to deep-water sponge communities and to mesophotic corals: fishing activities, pollution, and climate change, as well as in the Caribbean, invasive lionfish predation on herbivorous fishes that can result in overgrowth of algae that smother corals and sponges. The current geographic, habitat, and sampling biases prevent a full understanding of mesophotic sponge biodiversity and their ecological roles. Future studies must include not only massive sponges, but also the rare and harder to collect encrusting sponges. It is premature to draw global patterns of diversity and distribution for mesophotic sponges, since MCEs have not been studied worldwide, and geomorphological features vary within regions, causing species distributions to be highly variable.


Porifera Mesophotic coral ecosystems Biodiversity Coral reefs Taxonomy 



SP and MCD acknowledge support from the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration and Research under award numbers NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU) and NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. Data on Cuba MCE sponge biodiversity were collected during an expedition in support of the Joint Statement between the U.S.A. and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States NOAA and National Park Service, and Cuba’s National Center for Protected Areas. We thank Carlos Diaz (Director of Cuba’s National Center of Protected Areas) and his staff for assistance in securing the necessary permits and logistical support to conduct the expedition. Specimens from the western Pacific were collected and identified by Coral Reef Research Foundation under contract to the U.S. National Cancer Institute (NCI). We thank Helmut Lehnert (Germany) for permission to use his photos made at Discovery Bay, Jamaica during Trimix dives. Lisa Becking and Erik Meesters (Wageningen University) collected and photographed sponges in Bonaire and Klein Curaçao during an HOV exploration facilitated by Adrian (‘Dutch’) Schrier. Patrick L. Colin is thanked for his insights into mesophotic sponges and for the use of his western Pacific sponge photos. Megan Conkling (HBOI-FAU) is acknowledged for assistance with compiling the references.


  1. Alcolado PM (1980) Esponjas de Cuba. Nuevos registros. Poeyana 197:1–10Google Scholar
  2. Alcolado PM, Gotera GG (1986) Nuevas adiciones a la fauna de poriferos de Cuba. Poeyana 331:3Google Scholar
  3. Alvarez B, Van Soest RWM, Rützler K (1998) A revision of Axinellidae (Porifera: Demospongiae) in the Central West Atlantic region. Smithson Contrib Zool 598:1–47CrossRefGoogle Scholar
  4. Andradi-Brown D, Laverick J, Bejarano I et al (2016) Threats to mesophotic coral ecosystems and management options. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? United Nations Environment Programme and GRID, Arendal, pp 67–82Google Scholar
  5. Armstrong RA, Pizarro O, Roman C (2019) Underwater robotic technology for imaging mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 973–988Google Scholar
  6. Bell JJ, Davy SK, Jones T et al (2013) Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol 19(9):2613–2624CrossRefGoogle Scholar
  7. Bell JJ, Smith D, Hannan D et al (2014) Resilience to disturbance despite limited dispersal and self-recruitment in tropical barrel sponges: implications for conservation and management. PLoS ONE 9(3):e91635CrossRefGoogle Scholar
  8. Bongaerts P, Ridgeway T, Sampayo EM et al (2010) Assessing the “deep reef refuge” hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327Google Scholar
  9. Bridge TCL, Beaman RJ, Bongaerts P et al (2019) The Great Barrier Reef and Coral Sea. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 351–367Google Scholar
  10. Colin PL (2016) Spotlight on the Palau Island group. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? United Nations Environment Programme and GRID, Arendal, pp 31–36Google Scholar
  11. Colin PL, Lindfield SJ (2019) Palau. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 285–299Google Scholar
  12. De Bakker DM, Meesters EHWG, van Bleijswijk JDL et al (2016) Population genetic structure, abundance, and health status of two dominant benthic species in the Saba Bank National Park, Caribbean Netherlands: Montastraea cavernosa and Xestospongia muta. PLoS ONE 11(5):e0155969CrossRefGoogle Scholar
  13. de Goeij JM, Moodley L, Houtekamer M et al (2008) Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM feeding. Limnol Oceanogr 53(4):1376–1386CrossRefGoogle Scholar
  14. de Goeij JM, van Oevelen D, Vermeij MJA et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342(6154):108–110CrossRefGoogle Scholar
  15. De Laubenfels MW (1934) New sponges from the Puerto Rican deep. Smithson Misc Collect 91(17):11–12Google Scholar
  16. De Laubenfels MW (1936) A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in general, with material for a revision of the families and orders of the Porifera. Carnegie Inst Wash 467(30):1–22Google Scholar
  17. Diaz MC (2005) Common sponges from shallow marine habitats from Bocas del Toro region, Panama. Caribb J Sci 41:465–475Google Scholar
  18. Diaz MC (2011) Mangrove and coral reef sponge fauna: untold stories about shallow water Porifera in the Caribbean. HydrobiologiaGoogle Scholar
  19. Diaz MC, Rützler K (2001) Sponges an essential component of Caribbean coral reefs. Bull Mar Sci 69(2):535–546Google Scholar
  20. Diaz MC, Pomponi SA, Van Soest RWM (1993) A systematic revision of the central West Atlantic Halichondrida (Demospongiae, Porifera). Part III: description of valid species. In: Uriz MJ, Rützler K (eds) Recent advances in ecology and systematics of sponges. Sci Mar 57(4):273–274Google Scholar
  21. Duckworth AR, Peterson BJ (2013) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar Biol 160:27–35CrossRefGoogle Scholar
  22. Duckworth AR, West L, Vansach T et al (2012) Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Mar Ecol Prog Ser 462:67–77CrossRefGoogle Scholar
  23. Ereskovsky AV, Lavrov DV, Willenz P (2014) Five new species of Homoscleromorpha (Porifera) from the Caribbean Sea and re-description of Plakina jamaicensis. J Mar Biol Assoc UK 94(02):285–307CrossRefGoogle Scholar
  24. Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge communities. J Mar Biol Assoc UK 87:1683–1692CrossRefGoogle Scholar
  25. Erwin PM, Thacker RW (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17:2937–2947CrossRefGoogle Scholar
  26. Eyal G, Tamir R, Kramer N et al (2019) The Red Sea: Israel. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 199–214CrossRefGoogle Scholar
  27. Fromont J, Wahab MAA, Gomez O et al (2016) Patterns of sponge biodiversity in the Pilbara, Northwestern Australia. Diversity 8:21CrossRefGoogle Scholar
  28. Gress E, Voss JD, Eckert RJ et al (2019) The Mesoamerican reef. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 71–84CrossRefGoogle Scholar
  29. Hechtel GJ (1965) A systematic study of the Demospongiae of Port Royal, Jamaica. Bull Peabody Mus Nat Hist 20:1–103Google Scholar
  30. Hentschel U, Piel J, Degnan SN et al (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654CrossRefGoogle Scholar
  31. Hinderstein LM, Marr JCA, Martinez FA et al (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29(2):247–251CrossRefGoogle Scholar
  32. Hogg MM, Tendal OS, Conway KW et al (2010) Deep-sea sponge grounds: reservoirs of biodiversity, UNEP-WCMC Biodiversity Series no 32. UNEP-WCMC, CambridgeGoogle Scholar
  33. Knudby A, Kenchington E, Murillo FJ (2013) Modeling the distribution of Geodia sponges and sponge grounds in the northwest Atlantic. PLoS ONE 8(12):e82306CrossRefGoogle Scholar
  34. Kobluk DR, Van Soest RWM (1989) Cavity dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull Mar Sci 44(3):1207–1235Google Scholar
  35. Lang JC, Hartman WD, Land LS (1975) Sclerosponges: primary framework constructors on the Jamaican fore-reef. J Mar Res 33:223–231Google Scholar
  36. Lehnert H, Van Soest RWM (1996) North Jamaican deep fore-reef sponges. Beaufortia 46(4):53–81Google Scholar
  37. Lehnert H, Van Soest RWM (1998) Shallow water sponges of Jamaica. Beaufortia 48(5):71–103Google Scholar
  38. Lehnert H, Van Soest RWM (1999) More North Jamaican deep fore-reef sponges. Beaufortia 49(12):141–169Google Scholar
  39. Lesser MP (2006) Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol 328:277–288CrossRefGoogle Scholar
  40. Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1866CrossRefGoogle Scholar
  41. Lesser MP, Slattery M (2013) Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS ONE 8(11):e79799CrossRefGoogle Scholar
  42. Lesser MP, Slattery M, Stat M et al (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003CrossRefGoogle Scholar
  43. Maldonado M, Young CM (1998) Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Mar Ecol Prog Ser 174:123–139CrossRefGoogle Scholar
  44. Maldonado M, Aguilar R, Bannister RJ et al (2016) Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles, and conservation concerns. In: Rossi D (ed) Marine animal forests. Springer, BerlinGoogle Scholar
  45. Mehbub MF, Lei J, Franco C et al (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577CrossRefGoogle Scholar
  46. Morrow KM, Bourne DG, Humphrey C et al (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9(4):894–908CrossRefGoogle Scholar
  47. Muricy G, Lopes DA, Hajdu E et al (2011) Catalogue of Brazilian Porifera. Museu Nacional, Rio de Janeiro, p 300Google Scholar
  48. Nakao Y, Fusetani N (2010) Marine invertebrates: sponges. In: Liu HW, Mander L (eds) Comprehensive natural products II. Elsevier, Oxford, pp 327–362CrossRefGoogle Scholar
  49. Pérez T, Diaz MC, Ruiz C et al (2017) How a collaborative integrated taxonomic effort has trained new spongiologists and improved knowledge of Martinique Island (French Antilles, eastern Caribbean Sea) marine biodiversity. PLoS ONE 12(3):e0173859CrossRefGoogle Scholar
  50. Pisera A, Pomponi SA (2015) New data on lithistid sponges from the deep Florida shelf with description of a new species of Theonella. J Mar Biol Assoc UK 95(7):1297–1309CrossRefGoogle Scholar
  51. Pomponi SA, Reed JK, Wright AE et al (1996) Diversity and bioactivity of marine sponges of the Caribbean: the Turks and Caicos Islands. Caribb J Agric Nat Res 1(1):41–49Google Scholar
  52. Pomponi SA, Kelly M, Reed JK et al (2001) Diversity and bathymetric distribution of lithistid sponges in the tropical western Atlantic region. Bull Biol Soc Wash 10:344–353Google Scholar
  53. Pyle RL (2019) Advanced technical diving. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 959–972CrossRefGoogle Scholar
  54. Reed JK, Pomponi SA (1997) Biodiversity and distribution of deep and shallow water sponges in the Bahamas. Proc 8th Int Coral Reef Symp 2:1387–1392Google Scholar
  55. Reed JK, Farrington S, Harter S et al (2017) Characterization of the mesophotic benthic habitat, benthic macrobiota, and fish assemblages from ROV dives on Pulley Ridge during the 2015 R/V Walton Smith cruise; R/V Walton Smith – cruise no. WS15234.
  56. Roberts CM, McClean CJ, Veron JEN et al (2002) Biodiversity hotspots and conservation priorities for tropical reefs. ScienceGoogle Scholar
  57. Rützler K (1986) Phylum Porifera (sponges). In: Sterrer W (ed) Marine fauna and flora of Bermuda: a systematic guide to the identification of marine organisms. Wiley, New York, pp 1–742Google Scholar
  58. Rützler K (1990) Associations between sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian, Washington, DC, pp 455–466Google Scholar
  59. Rützler K, Smith KP (1992) Guide to western Atlantic species of Cinachyrella (Porifera: Tetillidae). Proc Biol Soc Wash 105(1):148–164Google Scholar
  60. Rützler K, Van Soest RWM, Piantoni C (2009) Sponges (Porifera) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico-origins, waters, and biota, Biodiversity, vol 1. Texas A&M University Press, College Station, pp 285–313Google Scholar
  61. Rützler K, Piantoni C, Van Soest RWM et al (2014) Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay. Zootaxa 3805(1):1–129CrossRefGoogle Scholar
  62. Schlacher TA, Schlacher-Hoenlinger MA, Williams A et al (2007) Richness and distribution of sponge megabenthos in continental margin canyons off southeastern Australia. Mar Ecol Prog Ser 340:73–88CrossRefGoogle Scholar
  63. Schmidt O (1870) Grundzüge einer Spongien-Fauna des atlantischen Gebietes. Wilhelm Engelmann, Leipzig, pp 1–88Google Scholar
  64. Schoenberg CHL, Fang JKH, Carballo JL (2017) Bioeroding sponges and the future of coral reefs. In: Bell JJ, Carballo JL (eds) Climate change, ocean acidification and sponges. Springer, Heidelberg (in press)Google Scholar
  65. Schulze FE (1887) Report on the Hexactinellida collected by H.M.S. ‘Challenger’ during the years 1873–1876. HMS Challenger Sci Results Zool 21:1–514Google Scholar
  66. Sedberry GR, Cooksey C, Crowe SF et al (2004) Characterization of deep reef habitat off the Southeastern U.S. with particular emphasis on discovery, exploration and description of reef fish spawning sites. Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, p 76Google Scholar
  67. Sinniger F, Ballantine DL, Bejarano I et al (2016) Biodiversity of mesophotic coral ecosystems. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? United Nations Environment Programme and GRID, Arendal, pp 50–62Google Scholar
  68. Sinniger F, Harii S, Humblet H et al (2019) Ryukyus Islands, Japan. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 231–247CrossRefGoogle Scholar
  69. Slattery M, Lesser MP (2012) Mesophotic coral reefs: a global model of structure and function. Proc 12th Int Coral Reef Symp. ICRS2012_9C_2Google Scholar
  70. Slattery M, Lesser MP (2014) Allelopathy in the tropical alga Lobophora variegata: mechanistic basis for a phase shift on mesophotic coral reefs. J Phycol 50:493–505CrossRefGoogle Scholar
  71. Slattery M, Lesser MP (2015) Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): comment on Pawlik et al. (2015). Mar Ecol Prog Ser 527:275–279CrossRefGoogle Scholar
  72. Slattery M, Lesser MP (2017) Cayman and Bahamas. Springer, Heidelberg (in press)Google Scholar
  73. Slattery M, Lesser MP, Brazeau D et al (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41CrossRefGoogle Scholar
  74. Slattery M, Lesser MP, Gochfeld DJ et al (2017) Biogeographic connectivity of Caribbean mesophotic sponge communities. In: Gochfeld DJ, Wright CS (eds) Proceedings of the AAUS 36th Scientific Symposium. American Academy of Underwater Sciences, Dauphin Island, pp 67–70Google Scholar
  75. Spalding MD, Fox HE, Allen GR et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583CrossRefGoogle Scholar
  76. Taylor MW, Thacker RW, Hentschel U (2007) Evolutionary insights from sponges. Science 316:1854–1855CrossRefGoogle Scholar
  77. Thacker RW, Diaz MC, Rützler K et al (2007) Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Custódio MR, Lôbo-Hajdu G, Hajdu E et al (eds) Porifera research: biodiversity, innovation, and sustainability. Museu Nacional, Rio de Janeiro, pp 621–626Google Scholar
  78. Thomas T, Moitinho-Silva L, Lurgi M et al (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870CrossRefGoogle Scholar
  79. Trussell GC, Lesser MP, Patterson MR et al (2006) Depth-specific differences in growth of the reef sponge Callyspongia vaginalis: role of bottom-up effects. Mar Ecol Prog Ser 323:149–158CrossRefGoogle Scholar
  80. Van Soest RWM (1977) A revision of the megacanthoxea-bearing tetillids (Porifera, Spirophorida), with a description of a new species. In: Hummelinck PW, Van der Steen LJ (eds) Studies on the fauna of Curaçao and other Caribbean islands, vol 53. M. Nijhoff, The Hague, pp 7–9Google Scholar
  81. Van Soest RWM (1978) Marine sponges from Curacao and other Caribbean localities, Part I. Keratosa. In: Hummelinck PW, Van der Steen LJ (eds) Studies on the fauna of Curaçao and other Caribbean islands, vol 56(179). M. Nijhoff, The Hague, pp 47–48Google Scholar
  82. Van Soest RWM (2017) Sponges of the Guyana shelf. Zootaxa 4217(1):1–225CrossRefGoogle Scholar
  83. Van Soest RWM, Stentoft N (1988) Barbados deep-water sponges. In: Hummelinck PW, Van der Steen LJ (eds) Studies on the fauna of Curacao and other Caribbean islands, vol 70(215). The Hague, M. Nijhoff, pp 92–93Google Scholar
  84. Van Soest RWM, Boury-Esnault N, Vacelet J et al (2012) Global diversity of sponges (Porifera). PLoS ONE 7(4):e35105CrossRefGoogle Scholar
  85. Van Soest RWM, Meesters EH, Becking LE (2014) Deep-water sponges (Porifera) from Bonaire and Klein Curacao, Southern Caribbean. Zootaxa 3878(5):401–443CrossRefGoogle Scholar
  86. Van Soest RWM, Boury-Esnault N, Hooper JNA et al (2017) World Porifera database. Accessed 18 Dec 2017
  87. Vicente J, Zea S, Hill RT (2016) Sponge epizoism in the Caribbean and the discovery of new Plakortis and Haliclona species, and polymorphism of Xestospongia deweerdtae (Porifera). Zootaxa 4178(2):209CrossRefGoogle Scholar
  88. Weinstein DK, Smith TB, Klaus JS (2014) Mesophotic bioerosion: variability and structural impact on US Virgin Island deep reefs. Geomorphology 222:14–24CrossRefGoogle Scholar
  89. Wiedenmayer F (1977) Shallow-water sponges of the western Bahamas. Experientia Suppl 28:1–287Google Scholar
  90. Wilkinson CR, Cheshire AC (1990) Comparisons of sponge populations across the barrier reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar Ecol Prog Ser 67:285–294CrossRefGoogle Scholar
  91. Wisshak M, Schonberb CHL, Form A et al (2014) Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgol Mar Res 68:253–262CrossRefGoogle Scholar
  92. Zea S (1987) Esponjas del Caribe Colombiano. Catálogo Cientifico, Santa Marta, pp 1–286Google Scholar
  93. Zea S, Valderrama D, Martinez AM (2013) Axinyssa ambrosia and Axinyssa yumae (Porifera, Halichondrida): two valid sponge species from the Caribbean Sea. Zootaxa 3682(3):495–500CrossRefGoogle Scholar
  94. Zhang F, Blasiak LC, Karolin JO et al (2015) Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci 112:4381–4386CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shirley A. Pomponi
    • 1
    Email author
  • M. Cristina Diaz
    • 1
  • Rob W. M. Van Soest
    • 2
  • Lori J. Bell
    • 3
  • Linnet Busutil
    • 4
  • Deborah J. Gochfeld
    • 5
  • Michelle Kelly
    • 6
  • Marc Slattery
    • 5
  1. 1.Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceUSA
  2. 2.Naturalis Biodiversity CentreLeidenNetherlands
  3. 3.Coral Reef Research FoundationKororPalau
  4. 4.Instituto de Ciencias del MarHavanaCuba
  5. 5.National Center for Natural Products Research and Department of BioMolecular SciencesUniversity of MississippiUniversityUSA
  6. 6.National Institute of Water and Atmospheric ResearchAucklandNew Zealand

Personalised recommendations