Skip to main content

Symmetry Breaking in Haloscope Microwave Cavities

  • Conference paper
Microwave Cavities and Detectors for Axion Research

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 211))

Abstract

Axion haloscope detectors use microwave cavities permeated by a magnetic field to resonate photons that are converted from axions due to the inverse Primakoff effect. The sensitivity of a detector is proportional to the form factor of the cavity’s search mode. Transverse symmetry breaking is used to tune the search modes for scanning across a range of axion masses. However, numerical analysis shows transverse and longitudinal symmetry breaking reduce the sensitivity of the search mode. Simulations also show longitudinal symmetry breaking leads to other undesired consequences like mode mixing and mode crowding. The results complicate axion dark matter searches and further reduce the search capabilities of detectors. The findings of a numerical analysis of symmetry breaking in haloscope microwave cavities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)

    Article  ADS  Google Scholar 

  3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)

    Article  ADS  Google Scholar 

  4. J. Ipser, P. Sikivie, Phys. Rev. Lett. 50, 925 (1983)

    Article  ADS  Google Scholar 

  5. I. Stern, AIP Conf. Proc. 1604, 456 (2014)

    Article  ADS  Google Scholar 

  6. B.M. Brubaker, L. Zhong, Y.V. Gurevich, S.B. Cahn, S.K. Lamoreaux, M. Simanovskaia, J.R. Root, S.M. Lewis, S. Al Kenany, K.M. Backes, I. Urdinaran, N.M. Rapidis, T.M. Shokair, K.A. van Bibber, D.A. Palken, M. Malnou, W.F. Kindel, M.A. Anil, K.W. Lehnert, G. Carosi, Phys. Rev. Lett. 118, 061302 (2017)

    Article  ADS  Google Scholar 

  7. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983)

    Article  ADS  Google Scholar 

  8. H. Primakoff, Phys. Rev. 81, 899 (1951)

    Article  ADS  Google Scholar 

  9. P. Sikivie, Phys. Rev. D 32, 2988 (1985)

    Article  ADS  Google Scholar 

  10. H. Zucker, G.I. Cohn, IRE Trans. Microw. Theory Tech. 10, 202 (1962)

    Article  ADS  Google Scholar 

  11. J. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999), pp. 363–374

    MATH  Google Scholar 

  12. W.C. Chew, Lectures on Theory of Microwave and Optical Waveguides, (unpublished), p. 96, http://wcchew.ece.illinois.edu/chew/course/tgwAll20121211.pdf

  13. I. Stern, A.A. Chisholm, J. Hoskins, P. Sikivie, N.S. Sullivan, D.B. Tanner, G. Carosi, K. van Bibber, Rev. Sci. Instrum. 86, 123305 (2015)

    Article  ADS  Google Scholar 

  14. D. Lyapustin, An improved low-temperature RF-cavity search for dark-matter axions, Ph.D. Thesis, Univ. of Wash., Seattle WA, 2015

    Google Scholar 

  15. C. Hagmann, P. Sikivie, N.S. Sullivan, D.B. Tanner, S.I. Cho, Rev. Sci. Instrum. 61, 1076 (1990)

    Article  ADS  Google Scholar 

  16. C. Hagmann, A search for cosmic axions, Ph.D. Thesis, Univ. of Flor., Gainesville FL, 1990

    Google Scholar 

Download references

Acknowledgements

This research was supported by DOE grant DE-SC0010296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Cite this paper

Stern, I., Sullivan, N.S., Tanner, D.B. (2018). Symmetry Breaking in Haloscope Microwave Cavities. In: Carosi, G., Rybka, G., van Bibber, K. (eds) Microwave Cavities and Detectors for Axion Research. Springer Proceedings in Physics, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-92726-8_2

Download citation

Publish with us

Policies and ethics