Advertisement

Emerging Causes of Encephalitis: Zika, Dengue, Chikungunya, and Beyond

  • Mario Luis Garcia de Figueiredo
  • Luiz Tadeu Moraes Figueiredo
Chapter

Abstract

Zoonotic viruses account for 75% of emerging infectious diseases in the world [1]. Many of these zoonotic viruses are arthropod-borne viruses (arboviruses) that can be transmitted by mosquitoes, flies, and ticks [2]. Arboviral infections can produce disease in the central nervous system (CNS) with acute clinical manifestations, such as headache and nuchal rigidity suggestive of meningitis, seizures, mental confusion or coma in cases of encephalitis, and motor dysfunctions in limbs and sphincter dysfunction, related to myelitis. Arbovirus infections can also produce later manifestations in the CNS including Guillain-Barré syndrome and Parkinsonism. The Flaviviridae of Flavivirus genera Zika (ZIKV), the four types of dengue (DENV-1–4), and the Togaviridae of Alphavirus genera chikungunya (CHIKV) are all arboviruses that cause epidemics of acute febrile illnesses in tropical world and, eventually, are reported producing diseases of the CNS [3].

Keywords

Dengue Zika SLEV WNEV Rocio Oropouche 

References

  1. 1.
    Hubalek Z. Emerging human infectious diseases: anthroponoses, zoonoses, and sapronoses. Emerg Infect Dis. 2003;9:403–4.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Meltzer E. Arboviruses and viral hemorrhagic fevers (VHF). Infect Dis Clin N Am. 2012;26:479–96.CrossRefGoogle Scholar
  3. 3.
    Figueiredo LTM. The recent arbovirus disease epidemic in Brazil. Rev Soc Bras Med Trop. 2015;48:233–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Patterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: emerging arboviruses in the new world. West J Emerg Med. 2016;17:671–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Solomon T. Flavivirus encephalitis. N Engl J Med. 2004;351:370–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Figueiredo LTM. The Brazilian flaviviruses. Microbes Infect. 2000;2:1643–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Vasconcelos HB, Nunes MR, Casseb LM, Carvalho VL, Pinto da Silva EV, Silva M, Casseb SM, Vasconcelos PF. Molecular epidemiology of Oropouche virus, Brazil. Emerg Infect Dis. 2016;17:800–6.CrossRefGoogle Scholar
  8. 8.
    Brinton MA. Replication cycle and molecular biology of the West Nile virus. Viruses. 2013;6:13–53.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009;4:837–56.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Proenca-Modena JL, Sesti-Costa R, Pinto AK, Richner JM, Lazear HM, Lucas T, Hyde JL, Diamond MS. Oropouche virus infection and pathogenesis are restricted by MAVS, IRF-3, IRF-7, and type I interferon signaling pathways in nonmyeloid cells. J Virol. 2015;89(9):4720–37.  https://doi.org/10.1128/JVI.00077-15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Taxonomy—International Committee on Taxonomy of Viruses (ICTV). Virus taxonomy: 2016 release, Budapest, Hungary. 2016. https://talk.ictvonline.org/taxonomy.
  12. 12.
    Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe. 2013;13:379–93.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amarilla AA, Setoh YX, Periasamy P, Pali G, Figueiredo LT, Khromykh AA, Aquino VH. Chimeras between Rocio and West Nile viruses reveal the role for Rocio virus prM and E proteins in virulence and inhibition of type I interferon signaling. Sci Rep. 2017;7:44642.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect. 2014;69:203–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Shirato K, Miyosh H, iGoto A, Ako Y, Ueki T, Kariwa HA, Takashima I. Viral envelope protein glycosylation is a molecular determinant of neuro invasiveness of the New York strain of West Nile virus. J Gen Virol. 2004;85:3637–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee E, Lobbigs M. Mechanisms of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol. 2002;76:4901–11.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Misra KM, Kalita J. Overview: Japanese encephalitis. Prog Neurobiol. 2010;91:108–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Santos RI, Bueno-Júnior LS, Ruggiero RN, Almeida MF, Silva ML, Paula FE, Correa VM, Arruda E. Spread of Oropouche virus into the central nervous system in mouse. Viruses. 2014;6:3827–36.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chávez JH, França RFO, Oliveira CJ, Aquino MTP, Farias KJ, Machado PR, Yokosawa J, Silva JS, Fonseca BAL, Figueiredo LTM. CCR-5/MIP-1 alpha affect the pathogenesis of Rocio virus encephalitis in a mouse model. Am J Trop Med Hyg. 2013;89:1013–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barros VD, Penharvel S, Forjaz J, Saggioro FP, Neder L, Figueiredo LTM. An experimental model of meningoencephalomyelitis by Rocio virus in Balb-C mice: hystopathology, inflammatory response and cytokine production. Am J Trop Med Hyg. 2011;85:363–73.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shrestha B, Samuel MS, Diamond MS. CD8fl T cells require perforin to clear West Nile fever from infected neurons. J Virol. 2006;80:119–29.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shresta B, Pinto AK, Green S, Bosch I, Diamond MS. CD8fl T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J Virol. 2012;86:8937–48.CrossRefGoogle Scholar
  23. 23.
    Brazilian Ministry of Health. Dengue, Chikungunya, Zika, Syndrome of Guillain-Barré. 2016.Google Scholar
  24. 24.
    Butler D. Zika virus: Brazil’s surge in small-headed babies questioned by report. Nature. 2016;530:13–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Macciocchi D, Lanini S, Vairo F, Zumla A, Figueiredo LTM, Lauria FN, Strada G, Brouqui P, Puro V, Krishna S, Kremsner P, Scognamiglio P, Köhler C, Nicastri E, Di Caro A, Cieri RM, Ioannidis JPA, Kobinger G, Burattini MN, Ippolito G. Short-term economic impact of the Zika virus outbreak. New Microbiol. 2016;39:287–9.PubMedGoogle Scholar
  26. 26.
    Silva IRF, Frontera JA, Filippis AMB, Nascimento OJM, RIO-GBS-ZIKV Research Group. Neurologic complications associated with the Zika virus in Brazilian adults. JAMA Neurol. 2017;74:1190–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Schwartzmann PV, Vilar FC, Takayanagui OM, Santos AC, Ayub-Ferreira SM, Ramalho LNZ, Neder L, Romeiro MF, Maia FGM, Tollardo AL, Zapata PM, Figueiredo LTM, Schmidt A, Simões MV. Zika virus associated encephalitis in immunocompromised patient. Mayo Clin Proc. 2017;92:460–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Misra UK, Kalita J, Syam UK, Dhole TN. Neurological manifestations of dengue virus infection. J Neurol Sci. 2006;244:117–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Bastos MS, Figueiredo LT, Naveca F, Figueiredo R, Oliveira CM, Gimaque JB, Assis K, Monte RL, Mourão MP. Infection of central nervous system by Oropouche Orthobunyavirus in three Brazilian patients. Am J Trop Med Hyg. 2012;86:732–5.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Tassara MP, Guilarde AO, Rocha BAM, Féres VCR, Martelli CMT. Neurological manifestations of dengue in Central Brazil. Rev Soc Bras Med Trop. 2017;50:379–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Queiroz RM, Prado RMA, Abud LG. Acute dengue encephalitis in a female Brazilian adult. Rev Soc Bras Med Trop. 2017;50:431.CrossRefPubMedGoogle Scholar
  32. 32.
    Figueiredo MLG, Figueiredo LTM. Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop. 2014;47:677–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Figueiredo LTM. Chikungunya virus emerged in Brazil producing large outbreaks that revealed uncommon clinical features and fatalities. Rev Soc Bras Med Trop. 2017;50:583–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Pereira LP, Villas-Bôas R, Scott SSO, Nóbrega PR, Sobreira-Neto MA, Castro JDV, Cavalcante B, Braga-Neto P. Encephalitis associated with the chikungunya epidemic outbreak in Brazil: report of 2 cases with neuroimaging findings. Rev Soc Bras Med Trop. 2017;50:413–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Lucena-Silva N, Assunção MELSM, Ramos FAP, Azevedo F, Lessa Junior R, Cordeiro MT, Brito CAA. Encephalitis associated with inappropriate antidiuretic hormone secretion due to chikungunya infection in Recife, state of Pernambuco, Brazil. Rev Soc Bras Med Trop. 2017;50:417–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Spinsanti L, Basquiera AL, Bulacio S, Somale V, Kim CH, Ré V, Rabbat D, Zárate A, Zlocowski JC, Mayor CQ, Contigiani M, Palacio S. St. Louis encephalitis in Argentina: the first case reported in the last seventeen years. Emerg Infect Dis. 2003;9:271–3.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Silva JR, Romeiro MF, Sousa WM, Munhoz TD, Borges GP, Soares OAB, Campos CHC, Machado RZ, Silva MLCR, Faria JLM, Chávez JH, Figueiredo LTM. Serosurvey of Saint Louis encephalitis and Rocio viruses in horses of Brazil. Rev Soc Bras Med Trop. 2014;47:414–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Mondini A, Lázaro E, Cardeal ILS, Nunes SH, Moreira CC, Rahal P, Figueiredo LTM, Bronzoni RVM, Chiaravalloti Neto F, Nogueira ML. Saint Louis encephalitis virus, Brazil. Emerg Infect Dis. 2007;13:176–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lopes OS, Coimbra TLM, Sacchetta LA, Calisher CH. Emergence of a new arbovirus disease in Brazil. 1. Isolation and characterization of the etiologic agent, Rocio virus. Am J Epidemiol. 1978;107:444–9.CrossRefGoogle Scholar
  40. 40.
    Tiriba AC, Miziara AM, Lourenço R, Costa CRB, Cota CS, Pinto GH. Encefalite humana primária epidêmica por arbovirus observada no litoral sul do Estado de São Paulo. Rev Assoc Med Bras. 1976;22:415–20.Google Scholar
  41. 41.
    Roehrig JT. West Nile virus in the United States—a historical perspective. Viruses. 2013;5:3088–108.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Morales MA, Barrandeguy M, Fabbri C, Garcia JB, Vissani A, Trono K, Gutierrez G, Pigretti P, Menchaca H, Garrido N, Taylor N, Fernandez F, Levis S, Enría D. West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis. 2006;12:1559–61.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Silva JR, Chávez JH, Munhoz TD, Borges GP, Soares OAB, Machado RZ, Valadão CAA, Silva MLCR, Faria JLM, Silva EE, Figueiredo LTM. Serologic survey for West Nile virus in Brazilian horses. Mem Inst Osvaldo Cruz. 2013;108:921–3.CrossRefGoogle Scholar
  44. 44.
    Vieira MA, Romano AP, Borba AS, Silva EV, Chiang JO, Eulálio KD, Azevedo RS, Rodrigues SG, Almeida-Neto WS, Vasconcelos PF. West Nile virus encephalitis: the first human case recorded in Brazil. Am J Trop Med Hyg. 2015;93:377–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bosanko CM, Gilroy J, Wang A-M, Sanders WS, Dulai M, Wilson J, Blum K. West Nile virus encephalitis involving the substantia nigra. Arch Neurol. 2003;60:1448–52.CrossRefPubMedGoogle Scholar
  46. 46.
    Knox J, Cowan RV, Dayle JS, Liqtermont MK, ArcherJS Burrow JN, et al. Murray Valley encephalitis; a review of clinical features diagnosis and treatment. Med J Aust. 2012;196:322–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mario Luis Garcia de Figueiredo
    • 1
  • Luiz Tadeu Moraes Figueiredo
    • 2
  1. 1.Laboratory of Virology, Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao PretoUniversity of Sao PauloRibeirao PretoBrazil
  2. 2.Virus Research UnitSchool of Medicine of the University of Sao PauloRibeirao PretoBrazil

Personalised recommendations