Any Shape Can Ultimately Cross Information on Two-Dimensional Abelian Sandpile Models

  • Viet-Ha Nguyen
  • Kévin Perrot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10875)


We study the abelian sandpile model on the two-dimensional grid with uniform neighborhood (a number-conserving cellular automata), and prove that any family of discrete neighborhoods defined as scalings of a continuous non-flat shape can ultimately perform crossing.


Sandpile models Crossing information Prediction problem 


  1. 1.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefGoogle Scholar
  2. 2.
    Björner, A., Lovász, L.: Chip-firing games on directed graphs. J. Algebraic Comb. 1, 305–328 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dhar, D.: The abelian sandpile and related models. Phys. A Stat. Mech. Appl. 263, 4–25 (1999)CrossRefGoogle Scholar
  4. 4.
    Formenti, E., Goles, E., Martin, B.: Computational complexity of avalanches in the kadanoff sandpile model. Fundamentae Informatica 115(1), 107–124 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Formenti, E., Perrot, K., Rémila, É.: Computational complexity of the avalanche problem on one dimensional kadanoff sandpiles. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds.) AUTOMATA 2014. LNCS, vol. 8996, pp. 21–30. Springer, Cham (2015). Scholar
  6. 6.
    Formenti, E., Perrot, K., Rémila, E.: Computational complexity of the avalanche problem for one dimensional decreasing sandpiles. J. Cell. Automata 13, 215–228 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gajardo, A., Goles, E.: Crossing information in two-dimensional sandpiles. Theor. Comput. Sci. 369(1–3), 463–469 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goles, E., Margenstern, M.: Universality of the chip-firing game. Theor. Comput. Sci. 172(1–2), 121–134 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goles, E., Montealegre, P., Perrot, K., Theyssier, G.: On the complexity of two-dimensional signed majority cellular automata. J. Comput. Syst. Sci. 91, 1–32 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Montoya, J.A., Mejía, C.: On the complexity of sandpile prediction problems. Electron. Notes Theor. Comput. Sci. 252, 229–245 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Moore, C., Nilsson, M.: The computational complexity of sandpiles. J. Stat. Phys. 96, 205–224 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tardos, G.: Polynomial bound for a chip firing game on graphs. SIAM J. Discrete Math. 1(3), 397–398 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Viet-Ha Nguyen
    • 1
    • 2
  • Kévin Perrot
    • 2
  1. 1.École Normale Supérieure de Lyon, CS departmentLyonFrance
  2. 2.Aix-Marseille Université, CNRS, Centrale Marseille, LISMarseilleFrance

Personalised recommendations