Magnetic-Responsive Superwetting Surface

  • Dongliang Tian
  • Na Zhang
  • Yan Li
  • Lei JiangEmail author
Part of the Biologically-Inspired Systems book series (BISY, volume 11)


Magnetic-responsive materials surfaces, especially for the magnetic-responsive superwetting surface, has attracted more and more attention in basic research and practical applications in intelligent fluid-controllable devices, owing to their advantages of in situ control, fast response, remote control and low energy consumption. This chapter focuses on the magnetic-responsive wettability on the superwetting surface and their typical applications, particularly on switchable wettability on magnetic-responsive surfaces and their applications such as tunable adhesion surface, microstructure fabrication, droplet actuation, and smart separation. Finally, our personal points of the future research prospect of this research are discussed.


Magnetic-responsive surface Superwetting Tunable adhesion Liquid actuation Separation 



The authors are grateful for financial support from the Chinese National Natural Science Foundation (21671012, 21373001, 21601013), Beijing Natural Science Foundation (2172033), the 973 Program (2013CB933004), the Fundamental Research Funds for the Central Universities, and the 111 Project (B14009).


  1. Bay HH, Patino D, Mutlu Z, Romero P, Ozkan M, Ozkan CS (2016) Scalable multifunctional ultra-thin graphite sponge: free-standing, superporous, superhydrophobic, oleophilic architecture with ferromagnetic properties for environmental cleaning. Sci Rep 6:21858PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24:12119–12122PubMedCrossRefGoogle Scholar
  3. Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419PubMedCrossRefGoogle Scholar
  4. Chen N, Pan Q (2013) Versatile fabrication of ultralight magnetic foams and application for oil-water separation. ACS Nano 7:6875–6883PubMedCrossRefGoogle Scholar
  5. Chen M, Jiang W, Wang F, Shen P, Ma P, Gu J, Mao J, Li F (2013) Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface. Appl Surf Sci 286:249–256CrossRefGoogle Scholar
  6. Chen L, Geissler A, Bonaccurso E, Zhang K (2014) Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Interfaces 6:6969–6976PubMedCrossRefGoogle Scholar
  7. Chen BY, Ju GN, Sakai E, Qiu JN (2015) Underwater low adhesive hydrogel-coated functionally integrated device by a one-step solution-immersion method for oil–water separation. RSC Adv 5:87055–87060CrossRefGoogle Scholar
  8. Cheng ZJ, Feng L, Jiang L (2008) Tunable adhesive superhydrophobic surfaces for superparamagnetic microdroplets. Adv Funct Mater 18:3219–3225CrossRefGoogle Scholar
  9. Cheng ZJ, Lai H, Zhang NQ, Sun KN, Jiang L (2012) Magnetically induced reversible transition between cassie and wenzel states of superparamagnetic microdroplets on highly hydrophobic silicon surface. J Phys Chem C 116:18796–18802CrossRefGoogle Scholar
  10. Chu Y, Pan QM (2012) Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. ACS Appl Mater Interfaces 4:2420–2425PubMedCrossRefGoogle Scholar
  11. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703PubMedCrossRefGoogle Scholar
  12. Crevoisier GD, Fabre P, Corpart JM, Leibler L (1999) Switchable tackiness and wettability of a liquid crystalline polymer. Science 285:1246–1249PubMedCrossRefPubMedCentralGoogle Scholar
  13. Damodara S, Sen AK (2017) Magnetic field assisted droplet manipulation on a soot-wax coated superhydrophobic surface of a PDMS-iron particle composite substrate. Sensors Actuat B Chem 239:816–823CrossRefGoogle Scholar
  14. Drotlef D-M, Blümler P, Papadopoulos P, Del Campo A (2014) Magnetically actuated micropatterns for switchable wettability. ACS Appl Mater Interfaces 6:8702–8707PubMedCrossRefGoogle Scholar
  15. Du R, Feng Q, Ren H, Zhao Q, Gao X, Zhang J (2016a) Hybrid-dimensional magnetic microstructure based 3D substrates for remote controllable and ultrafast water remediation. J Mater Chem A 4:938–943CrossRefGoogle Scholar
  16. Du R, Zhao Q, Li P, Ren H, Gao X, Zhang J (2016b) Ultrathermostable, magnetic-driven, and superhydrophobic quartz fibers for water remediation. ACS Appl Mater Interfaces 8:1025–1032PubMedCrossRefGoogle Scholar
  17. Duan C, Zhu T, Guo J, Wang Z, Liu X (2015) Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophobic/superoleophilic particles. ACS Appl Mater Interfaces 7:10475–10481PubMedCrossRefGoogle Scholar
  18. Dudchenko AV, Rolf J, Shi L, Olivas L, Duan W, Jassby D (2015) Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: an experimental and theoretical study. ACS Nano 9:9930–9941PubMedCrossRefGoogle Scholar
  19. Duvivier D, Rioboo R, Voué M, Coninck JD (2012) Drop impact on superhydrophobic surfaces−varying gravitational effects. Atomization Spray 22:409–429CrossRefGoogle Scholar
  20. Egatz-Gómez A, Schneider J, Aella P, Yang D, Domínguez-García P, Lindsay S, Picraux ST, Rubio MA, Melle S, Marquez M, García AA (2007) Silicon nanowire and polyethylene superhydrophobic surfaces for discrete magnetic microfluidics. Appl Surf Sci 254:330–334CrossRefGoogle Scholar
  21. Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078CrossRefGoogle Scholar
  22. Feng H, Xu X, Hao W, Du Y, Tian D, Jiang L (2016) Magnetic field actuated manipulation and transfer of oil droplets on a stable underwater superoleophobic surface. Phys Chem Chem Phys 18:16202–16207PubMedCrossRefGoogle Scholar
  23. Flores JA, Pavía-Sanders A, Chen Y, Pochan DJ, Wooley KL (2015) Recyclable hybrid inorganic/organic magnetically active networks for the sequestration of crude oil from aqueous environments. Chem Mater 27:3775–3782CrossRefGoogle Scholar
  24. Ge B, Zhang ZZ, Zhu XT, Ren G, Men XH, Zhou XY (2013) A magnetically superhydrophobic bulk material for oil removal. Colloids Surf A Physicochem Eng Asp 429:129–133CrossRefGoogle Scholar
  25. Ge B, Zhu X, Li Y, Men X, Li P, Zhang Z (2015) Versatile fabrication of magnetic superhydrophobic foams and application for oil–water separation. Colloids Surf A Physicochem Eng Asp 482:687–692CrossRefGoogle Scholar
  26. Grigoryev A, Tokarey T, Kornev KG, Luzinov I, Minko S (2012) Superomniphobic magnetic microtextures with remote wetting control. J Am Chem Soc 134:12916–12919PubMedCrossRefGoogle Scholar
  27. Gui X, Zeng Z, Lin Z, Gan Q, Xiang R, Zhu Y, Cao A, Tang Z (2013) Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl Mater Interfaces 5:5845–5855PubMedCrossRefGoogle Scholar
  28. Hong X, Gao XF, Jiang L (2007) Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J Am Chem Soc 129:1478–1479PubMedCrossRefGoogle Scholar
  29. Hu YJ, Jiang H, Liu J, Li YF, Hou XY, Li CZ (2014) Highly compressible magnetic liquid marbles assembled from hydrophobic magnetic chain-like nanoparticles. RSC Adv 4:3162–3164CrossRefGoogle Scholar
  30. Huang C-Y, Lai M-F, Liu W-L, Wei Z-H (2015) Anisotropic wettability of biomimetic micro/nano dual-scale inclined cones fabricated by ferrofluid-molding method. Adv Funct Mater 25:2670–2676CrossRefGoogle Scholar
  31. Khalil KS, Mahmoudi SR, Abu-dheir N, Varanasi KK (2014) Active surfaces: ferrofluid-impregnated surfaces for active manipulation of droplets. Appl Phys Lett 105:041604CrossRefGoogle Scholar
  32. Lee CP, Chen YH, Lai MF (2014) Ferrofluid-molding method for polymeric microlens arrays fabrication. Microfluid Nanofluid 16:179–186CrossRefGoogle Scholar
  33. Lee S, Yim C, Kim W, Jeon S (2015) Magnetorheological elastomer films with tunable wetting and adhesion properties. ACS Appl Mater Inter 7:19853–19856CrossRefGoogle Scholar
  34. Li XM, Reinhoudt D, Crego-Calama M (2007) What do me need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368PubMedCrossRefGoogle Scholar
  35. Li J, Shi L, Chen Y, Zhang YB, Guo ZG, Su BL, Liu WM (2012) Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J Mater Chem 22:9774–9781CrossRefGoogle Scholar
  36. Li L, Li B, Wu L, Zhao X, Zhang J (2014) Magnetic, superhydrophobic and durable silicone sponges and their applications in removal of organic pollutants from water. Chem Commun 50:7831–7833CrossRefGoogle Scholar
  37. Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly (DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun 52:1895–1898CrossRefGoogle Scholar
  38. Liu MJ, Zheng YM, Zhai J, Jiang L (2010a) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43:368–377PubMedCrossRefGoogle Scholar
  39. Liu KS, Yao X, Jiang L (2010b) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255PubMedCrossRefGoogle Scholar
  40. Liu KS, Cao MY, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094PubMedCrossRefGoogle Scholar
  41. Liu S, Xu Q, Latthe SS, Gurav AB, Xing R (2015a) Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. RSC Adv 5:68293–68298CrossRefGoogle Scholar
  42. Liu C, Yang J, Tang Y, Yin L, Tang H, Li C (2015b) Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids Surf A Physicochem Eng Asp 468:10–16CrossRefGoogle Scholar
  43. Mats L, Young R, Gibson GTT, Oleschuk RD (2015) Magnetic droplet actuation on natural (colocasia leaf) and fluorinated silica nanoparticle superhydrophobic surfaces. Sensor Actuat B Chem 220:5–12CrossRefGoogle Scholar
  44. Mats L, Logue F, Oleschuk RD (2016) “Particle-free” magnetic actuation of droplets on superhydrophobic surfaces using dissolved paramagnetic salts. Anal Chem 88:9486–9494PubMedCrossRefGoogle Scholar
  45. Nagappan S, Ha CS (2015) Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. J Mater Chem A 3:3224–3251CrossRefGoogle Scholar
  46. Nguyen NT (2013) Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir 29:13982–13989PubMedCrossRefGoogle Scholar
  47. Pavía-Sanders A, Zhang S, Flores JA, Sanders JE, Raymond JE, Wooley KL (2013) Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments. ACS Nano 7:7552–7561PubMedCrossRefGoogle Scholar
  48. Peng Y, He YX, Yang S, Ben S, Cao MY, Li K, Liu KS, Jiang L (2015) Magnetically induced fog harvesting via flexible conical arrays. Adv Funct Mater 25:5967–5971CrossRefGoogle Scholar
  49. Peng H, Wang H, Wu J, Meng G, Wang Y (2016) Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water. Ind Eng Chem Res 55:832–838CrossRefGoogle Scholar
  50. Poesio P, Wang EN (2014) Resonance induced wetting state transition of a ferrofluid droplet on superhydrophobic surfaces. Exp Thermal Fluid Sci 57:353–357CrossRefGoogle Scholar
  51. Qiu Z, Sun J, Wang R, Zhang Y, Wu X (2016) Magnet-induced fabrication of a superhydrophobic surface on ZK60 magnesium alloy. Surf Coat Tech 286:246–250CrossRefGoogle Scholar
  52. Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99CrossRefGoogle Scholar
  53. Rashin MN, Kutty RG, Hemalatha J (2014) Novel coconut oil based magnetite nanofluid as ecofriendly oil spill remover. Ind Eng Chem Res 53:15725–15730CrossRefGoogle Scholar
  54. Rigoni C, Pierno M, Mistura G, Delphine T, René M, Bacri CR, Hassan AA (2016) Static magnetowetting of ferrofluid drops. Langmuir 32:7639–7646PubMedCrossRefGoogle Scholar
  55. Seo KS, Wi R, Im SG, Kim DH (2013) A superhydrophobic magnetic elastomer actuator for droplet motion control. Polym Adv Technol 24:1075–1080CrossRefGoogle Scholar
  56. Su B, Guo W, Jiang L (2015) Learning from nature: binary cooperative complementary nanomaterials. Small 11:1072–1096PubMedCrossRefGoogle Scholar
  57. Sun TL, Feng L, Gao XF, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652PubMedCrossRefGoogle Scholar
  58. Sun TL, Qing GY, Su BL, Jiang L (2011) Functional biointerface materials inspired from nature. Chem Soc Rev 40:2909–2921PubMedCrossRefGoogle Scholar
  59. Tian DL, Song YL, Jiang L (2013) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42:5184–5209PubMedCrossRefGoogle Scholar
  60. Tian Y, Su B, Jiang L (2014a) Interfacial material system exhibiting superwettability. Adv Mater 26:6872–6897PubMedCrossRefGoogle Scholar
  61. Tian DL, Guo ZY, Wang YL, Li WX, Zhang XF, Zhai J, Jiang L (2014b) Phototunable underwater oil adhesion of micro/nanoscale hierarchical-structured ZnO mesh films with switchable contact mode. Adv Funct Mater 24:536–542CrossRefGoogle Scholar
  62. Tian DL, Zhang N, Zheng X, Hou GL, Tian Y, Du Y, Jiang L, Dou SX (2016) Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface. ACS Nano 10:6220–6226PubMedCrossRefGoogle Scholar
  63. Timonen JVI, Latikka M, Ikkala O, Ras RHA (2013a) Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat Commun 4:2398PubMedCrossRefGoogle Scholar
  64. Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O (2013b) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341:253–257PubMedCrossRefGoogle Scholar
  65. Turco A, Malitesta C, Barillaro G, Greco A, Maffezzoli A, Mazzotta E (2015) A magnetic and highly reusable macroporous superhydrophobic/superoleophilic PDMS/MWNT nanocomposite for oil sorption from water. J Mater Chem A 3:17685–17696CrossRefGoogle Scholar
  66. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432CrossRefGoogle Scholar
  67. Wang ST, Song YL, Jiang L (2007) Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C 8:18–29CrossRefGoogle Scholar
  68. Wang ST, Liu KS, Yao X, Jiang L (2015a) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115:8230–8293PubMedCrossRefGoogle Scholar
  69. Wang LB, Li FY, Kuang MN, Gao M, Wang JX, Huang Y, Jiang L, Song YL (2015b) Interface manipulation for printing three-dimensional microstructures under magnetic guiding. Small 11:1900–1904PubMedCrossRefGoogle Scholar
  70. Wang B, Liu Y, Zhang YB, Guo ZG, Zhang H, Xin JH, Zhang L (2015c) Bioinspired superhydrophobic Fe3O4@Polydopamine@Ag hybrid nanoparticles for liquid marble and oil spill. Adv Mater Interfaces 2:1500234CrossRefGoogle Scholar
  71. Wang L, Gao C, Hou Y, Zheng Y, Jiang L (2016a) Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface. J Mater Chem A 4:18289–18293CrossRefGoogle Scholar
  72. Wang J, Geng G, Liu X, Han F, Xu J (2016b) Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water. Chem Eng Res Des 115:122–130CrossRefGoogle Scholar
  73. Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399CrossRefGoogle Scholar
  74. Wu L, Zhang JP, Li B, Wang A (2014) Magnetically driven super durable superhydrophobic polyester materials for oil/water separation. Polym Chem 5:2382–2390CrossRefGoogle Scholar
  75. Wu J, Wang N, Zhao Y, Jiang L (2015a) Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal. Nanoscale 7:2625–2632PubMedCrossRefGoogle Scholar
  76. Wu L, Li L, Li B, Zhang J, Wang A (2015b) Magnetic, durable and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946PubMedCrossRefGoogle Scholar
  77. Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858CrossRefGoogle Scholar
  78. Xia F, Ge H, Hou Y, Sun TL, Chen L, Zhang GZ, Jiang L (2007) Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater 19:2520CrossRefGoogle Scholar
  79. Xia DY, Johnson LM, López GP (2012) Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications. Adv Mater 24:1287–1302PubMedCrossRefGoogle Scholar
  80. Xin BW, Hao JC (2010) Reversibly switchable wettability. Chem Soc Rev 39:769–782PubMedCrossRefPubMedCentralGoogle Scholar
  81. Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460CrossRefGoogle Scholar
  82. Yang F, Dong Y, Guo Z (2014) Facile fabrication of core shell Fe3O4@ polydopamine microspheres with unique features of magnetic control behavior and special wettability. Colloids Surf A Physicochem Eng Asp 463:101–109CrossRefGoogle Scholar
  83. Yao X, Song YL, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734PubMedCrossRefGoogle Scholar
  84. Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nat Mater 12:529–534PubMedCrossRefGoogle Scholar
  85. Yu L, Hao G, Liang Q, Zhou S, Zhang N (2015) Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption. Appl Surf Sci 357:2297–2305CrossRefGoogle Scholar
  86. Yu L, Zhou X, Jiang W (2016a) Low-cost and superhydrophobic magnetic foam as an absorbent for oil and organic solvent removal. Ind Eng Chem Res 55:9498–9506CrossRefGoogle Scholar
  87. Yu L, Hao G, Zhou S, Jiang W (2016b) Durable and modified foam for cleanup of oil contamination and separation of oil–water mixtures. RSC Adv 6:24773–24779CrossRefGoogle Scholar
  88. Zhang JL, Han YC (2010) Active and responsive polymer surfaces. Chem Soc Rev 39:676–693PubMedCrossRefGoogle Scholar
  89. Zhang X, Shi F, Niu J, Jiang YG, Wang ZQ (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633CrossRefGoogle Scholar
  90. Zhang JH, Cheng ZJ, Zheng YM, Jiang L (2009) Ratchet-induced anisotropic behavior of superparamagnetic microdrople. Appl Phys Lett 94:144104CrossRefGoogle Scholar
  91. Zhang L, Cha D, Wang P (2012a) Remotely controllable liquid marbles. Adv Mater 24:4756–4760PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zhang L, Wu J, Wang Y, Long Y, Zhao N, Xu J (2012b) Combination of bioinspiration: a general route to superhydrophobic particles. J Am Chem Soc 134:9879–9881PubMedCrossRefGoogle Scholar
  93. Zhang L, Li L, Dang Z (2016) Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation. J Colloid Interface Sci 463:266–271PubMedCrossRefGoogle Scholar
  94. Zhao Y, Xu Z, Parhizkar M, Fang J, Wang X, Lin T (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13:555–564CrossRefGoogle Scholar
  95. Zhou Q, Ristenpart WD, Stroeve P (2011) Magnetically induced decrease in droplet contact angle on nanostructured surfaces. Langmuir 27:11747–11751PubMedCrossRefGoogle Scholar
  96. Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil–water separation. ACS Nano 8:1402–1409PubMedCrossRefGoogle Scholar
  97. Zhu Q, Tao F, Pan Q (2010) Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field. ACS Appl Mater Interfaces 2:3141–3146PubMedCrossRefGoogle Scholar
  98. Zhu GP, Nguyen NT, Ramanujan RV, Huang XY (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27:14834–14841PubMedCrossRefGoogle Scholar
  99. Zhu Y, Antao DS, Xiao R, Wang EN (2014) Real-time manipulation with magnetically tunable structures. Adv Mater 26:6442–6446PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Biomedical Engineering, School of ChemistryBeihang UniversityBeijingChina
  2. 2.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations