Advertisement

Solvent Response

  • Motoyasu KobayashiEmail author
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 11)

Abstract

Solvent-responsive surfaces prepared by various polymer brushes are described. The motivation and attractive feature of polymer brushes for the design of stimuli- responsive surface was also explained. Polymer brushes, in general, form a relatively stretched conformation in a good or theta solvent due to high osmotic pressure, but collapse in a poor solvent. Therefore, swollen thickness and morphology of brush can be changeable by a selective solvent. AB-type diblock copolymer brushes or binary mixed brushes treated with a selective solvent gave characteristic nano-patterned morphologies attributed to self-assemble behavior which induced large roughness on the surface to result in the wettability change. Swollen thickness and interfacial structures of polyelectrolyte brushes in aqueous solution are strongly affected with pH, added salt concentration, ion species, and temperature. pH-Responsive surface prepared by binary components mixed polyelectrolyte brushes was mentioned. Thermo-sensitive poly(N-isopropyl acrylamide) (PNiPAAm) brushes was used as a cell culture surface to achieve the smooth detachment of contiguous cell sheets under reduced temperature by using hydration behavior of PNiPAAm below lower critical solution temperature. Super hydrophilic poly(sulfobetine) brush was fabricated on super hydrophobic poly(vinylidene fluoride) (PVDF) membranes. The resulting membranes successfully separated oil and water from their dispersed mixture by filtration of water with suction and to remain oil portion on the membranes. This is a typical smart application of the characteristic oleophobic behavior underwater of poly(sulfobetine) brush. Various applications of super hydrophilic polyelectrolyte brushes can be expected in the future.

Keywords

Polymer brushes Surface-initiated polymerization Surface grafting Polyelectrolyte Selective solvent Antifouling 

References

  1. Albright PS, Gosting LJ (1946) Dielectric constants of the methanol-water system from 5 to 55°. J Am Chem Soc 68:1061–1063CrossRefGoogle Scholar
  2. Azzaroni O, Moya S, Farhan T, Brown AA, Huck WTS (2005) Switching the properties of polyelectrolyte brushes via “hydrophobic collapse”. Macromolecules 38:10192–10199CrossRefGoogle Scholar
  3. Biesalski M, Johannsmann D, Rühe J (2004) Electrolyte-induced collapse of a polyelectrolyte brush. J Chem Phys 120:8807–8814CrossRefGoogle Scholar
  4. Brown PS, Atkinson ODLA, Badyal JPS (2014) Ultrafast oleophobic hydrophilic switching surfaces for antifogging, self-cleaning, and oil-water separation. ACS Appl Mater Interfaces 6:7504–7511CrossRefGoogle Scholar
  5. Chen L, Honma Y, Mizutani T, Liaw DJ, Gong JP, Osada Y (2000) Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 41:141–147CrossRefGoogle Scholar
  6. Feng J, Haasch RT, Dyer DJ (2004a) Photoinitiated synthesis of mixed polymer brushes of polystyrene and poly(methyl methacrylate). Macromolecules 37:9525–9537CrossRefGoogle Scholar
  7. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004b) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014CrossRefGoogle Scholar
  8. Feng L, Wang Y, Wang S (2009) Mixed poly(methyl methacrylate)/poly(ethylene glycol) brushes: study of switching behavior in selective solvent. J Appl Polym Sci 112:2112–2119CrossRefGoogle Scholar
  9. Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRefGoogle Scholar
  10. Higaki Y, Nishida J, Takenaka A, Yoshimatsu R, Kobayashi M Takahara A (2015) Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J 47:811–818CrossRefGoogle Scholar
  11. Higaki Y, Kobayashi M, Murakami D, Takahara A (2016) Anti-fouling behavior of polymer brush immobilized surfaces. Polym J 48:325–331CrossRefGoogle Scholar
  12. Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, Yamada NL, Moriwaki T, Ikemoto Y, Takahara A (2017) Effect of charged group spacer length on hydration state in zwitterionic poly(sulfobetaine) brushes. Langmuir 33:8404–8412CrossRefGoogle Scholar
  13. Hou Y, Liu GM, Wu Y, Zhang GZ (2011) Reentrant behavior of grafted poly(sodium styrenesulfonate) chains investigated with a quartz crystal microbalance. Phys Chem Chem Phys 13:2880–2886CrossRefGoogle Scholar
  14. Ionov L, Houbenov N, Sidorenko A, Stamm M, Luzinov I, Minko S (2004a) Inverse and reversible switching gradient surfaces from mixed polyelectrolyte brushes. Langmuir 20:9916–9919CrossRefGoogle Scholar
  15. Ionov L, Stamm M, Minko S, Hoffmann F, Wolff T (2004b) Switching and structure of binary reactive polymer brush layer. Macromol Symp 210:229–235CrossRefGoogle Scholar
  16. Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22:355–360CrossRefGoogle Scholar
  17. Kikuchi M, Terayama Y, Ishikawa T, Hoshino T, Kobayashi M, Ohta N, Jinnai H, Takahara A (2015) Salt dependence of the chain stiffness and excluded-volume strength for the polymethacrylate-type sulfopropylbetaine in aqueous NaCl solutions. Macromolecules 48:7194–7204CrossRefGoogle Scholar
  18. Kitano H, Imai M, Mori T, Gemmei-Ide M, Yokoyama Y, Ishihara K (2003) Structure of water in the vicinity of phospholipid analogue copolymers as studied by vibrational spectroscopy. Langmuir 19:10260–10266CrossRefGoogle Scholar
  19. Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4:4987–4992CrossRefGoogle Scholar
  20. Kobayashi M, Terada M, Takahara A (2011) Reversible adhesive-free nanoscale adhesion utilizing oppositely charged polyelectrolyte brushes. Soft Matter 7:5717–5722CrossRefGoogle Scholar
  21. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28:7212–7222CrossRefGoogle Scholar
  22. Kobayashi M, Terayama Y, Kikuchi M, Takahara A (2013a) Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter 9:5138–5148CrossRefGoogle Scholar
  23. Kobayashi M, Matsugi T, Saito J, Imuta J, Kashiwa N Takahara A (2013b) Direct modification of polyolefin films by surface-initiated polymerization of a phosphobetaine monomer. Polym Chem 4:731–739CrossRefGoogle Scholar
  24. Kobayashi M, Ishihara K, Takahara A (2014) Neutron reflectivity study of the swollen structure of polyzwitterion and polyelectrolyte brushes in aqueous solution. J Biomater Sci Polym Ed 25:1673–1686CrossRefGoogle Scholar
  25. Kong X, Kawai T, Abe J, Iyoda T (2001) Amphiphilic polymer brushes grown from the silicon surface by atom transfer radical polymerization. Macromolecules 34:1837–1844CrossRefGoogle Scholar
  26. Kudaibergenov S (2002) Polyampholytes. Kluwer Academic/Plenum Publishers, New York, pp 137–146Google Scholar
  27. Kumashiro Y, Fukumori K, Takahashi H, Nakayama M, Akiyama Y, Yamato M, Okano T (2013) Modulation of cell adhesion and detachment on thermo-responsive polymeric surfaces through the observation of surface dynamics. Colloids Surf B Biointerfaces 106:198–207CrossRefGoogle Scholar
  28. LaSpina R, Tomlinson MR, Ruiz-Pérez L, Chiche A, Langridge S, Geoghegan M (2007) Controlling network-brush interactions to achieve switchable adhesion. Angew Chem Int Ed 46:6460–6463CrossRefGoogle Scholar
  29. Lemieux M, Usov D, Minko S, Stamm M, Shulha H, Tsukruk VV (2003) Reorganization of binary polymer brushes: reversible switching of, surface microstructures and nanomechanical properties. Macromolecules 36:7244–7255CrossRefGoogle Scholar
  30. Liu LD, Wang T, Liu C, Lin K, Ding YW, Liu GM, Zhang GZ (2013) Mechanistic insights into amplification of specific ion effect in water-nonaqueous solvent mixtures. J Phys Chem B 117:2535–2544CrossRefGoogle Scholar
  31. Long YC, Wang T, Liu LD, Liu GM, Zhang GZ (2013) Ion specificity at a low salt concentration in water-methanol mixtures exemplified by a growth of polyelectrolyte multilayer. Langmuir 29:3645–3653CrossRefGoogle Scholar
  32. Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008a) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778CrossRefGoogle Scholar
  33. Matsuda Y, Kobayshi M, Annaka M, Ishihara K, Takahara A (2008b) UCST-type cononsolvency behavior of poly(2-methacryloxyethyl phosphorylcholine) in the mixture of water and ethanol. Polym J 40:479–483CrossRefGoogle Scholar
  34. Murdoch TJ, Willott JD, de Vos WM, Nelson A, Prescott SW, Wanless EJ, Webber GB (2016) Influence of anion hydrophilicity on the conformation of a hydrophobic weak polyelectrolyte brush. Macromolecules 49:9605–9617CrossRefGoogle Scholar
  35. Nagasawa M, Eguchi Y (1976) The charge effect in sedimentation I. Polyelectrolyte. J Phys Chem 71:880–888CrossRefGoogle Scholar
  36. Nagase K, Kumazaki M, Kanazawa H, Kobayashi J, Kikuci A, Akiyama Y, Annaka M, Okano T (2010) Thermoresponsive polymer brush surfaces with hydrophobic groups for all-aqueous chromatography. ACS Appl Mater Int 2:1247–1253CrossRefGoogle Scholar
  37. Ono T, Sugimoto T, Shinkai S, Sada K (2007) Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nauret Mater 6:429–433CrossRefGoogle Scholar
  38. Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919CrossRefGoogle Scholar
  39. Pozar J, Bohinc K, Vlachy V, Kovacevic D (2011) Ion-specific and charge effects in counterion binding to poly(Styrenesulfonate) anions. Phys Chem Chem Phys 13:15610–15618CrossRefGoogle Scholar
  40. Rühe J (2004) Polymer brushes on the way to tailor-made surfaces. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley VCH, Weinheim, pp 1–31Google Scholar
  41. Rühe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang H (2004) Polyelectrolyte brushes. Adv Polym Sci 165:79–150CrossRefGoogle Scholar
  42. Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, Handwerker B, Garner RT (1986) Phase behaviour and solution properties of sulphobetaine polymers. Polymer 27:1734–1742CrossRefGoogle Scholar
  43. Sidorenko A, Minko S, Meuser KS, Duschner H, Stamm M (1999) Switching of polymer brushes. Langmuir 15:8349–8355CrossRefGoogle Scholar
  44. Sonmez HB, Wudl F (2005) Cross-linked poly(orthocarbonate)s as organic solvent sorbents. Macromolecules 38:1623–1626CrossRefGoogle Scholar
  45. Standeker S, Novak Z, Knez Z (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 31:362–368CrossRefGoogle Scholar
  46. Sudre G, Olanier L, Tran Y, Hourdet D, Creton C (2012) Reversivle adhesion between a hydrogel and a polymer brush. Soft Matter 8:8184–8193CrossRefGoogle Scholar
  47. Takahashi A, Kato N, Nagasawa M (1970) The osmotic pressure of polyelectrolyte in neutral salt solutions. J Phys Chem 74:944–946CrossRefGoogle Scholar
  48. Wang T, Liu GM, Zhang GZ, Craig VSJ (2012) Insights into ion specificity in water-methanol mixtures via the reentrant behavior of polymer. Langmuir 28:1893–1899CrossRefGoogle Scholar
  49. Wang T, Long Y, Liu L, Wang X, Craig VSJ, Zhang G, Liu G (2014) Cation-specific conformational behavior of polyelectrolyte brushes: from aqueous to nonaqueous solvent. Langmuir 30:12850–12859CrossRefGoogle Scholar
  50. Xu Y, Liu G (2014) Amplification of Hofmeister effect by alcohols. J Phys Chem B 118:7450–7456CrossRefGoogle Scholar
  51. Yang R, Moni P, Gleason KK (2015) Ultrathin zwitterionic coatings for roughness-independent underwater superoleophobicity and gravity-driven oil-water separation. Adv Mater Interfaces 2(2): 1400489CrossRefGoogle Scholar
  52. Ye P, Dong H, Zhong M, Matyjaszewski K (2011) Synthesis of binary polymer brushes via two-step reverse atom transfer radical polymerization. Macromolecules 44:2253–2260CrossRefGoogle Scholar
  53. Yoshioka H, Izumi C, Shida M, Yamaguchi K, Kobayashi M (2017) Repeatable adhesion by proton donor-acceptor interaction of polymer brushes. Polymer 119:167–175CrossRefGoogle Scholar
  54. Yuan J, Liu X, Akubulut O, Xu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nature Nanotechnol 3:332–336CrossRefGoogle Scholar
  55. Zhao B, Brittain WJ, Zhou W, Cheng SZD (2000) AFM study of tethered polystyrene-b-poly(methyl methacrylate) and polystyrene-b-poly(methyl acrylate) brushes on flat silicate substrates. Macromolecules 33:8821–8827CrossRefGoogle Scholar
  56. Zhao B, Haasch RT, MacLaren S (2004) Solvent-induced self-assembly of mixed poly(methyl methacrylate)/polystyrene brushes on planar silica substrates: molecular weight effect. J Am Chem Soc 126:6124–6134CrossRefGoogle Scholar
  57. Zhu Y, Zhang F, Wang D, Pei XF, Zhang W, Jin J (2013) A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J Mater Chem A 1:5758–5765CrossRefGoogle Scholar
  58. Zhulina EB, Rubinstein M (2012) Ionic strength dependence of polyelectrolyte brush thickness. Soft Matter 8:9376–9383CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Advanced School of EngineeringKogakuin UniversityTokyoJapan

Personalised recommendations