Advertisement

Photo-Responsive Superwetting Surface

  • Dongliang Tian
  • Yan Li
  • Lei JiangEmail author
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 11)

Abstract

Photo-responsive surfaces, especially for the photo-responsive superwetting surface, have aroused great interests in smart control devices for a few years due to their remote control and selectivity. This chapter focuses on the photo-responsive wettability on the superwetting surface and their typical applications, particularly on switchable wettability on photo-responsive surfaces and their applications such as droplet actuation, adhesion control, liquid printing and oil-water separation. Finally, our personal point of the prospects and challenges of the photo-responsive wettability surfaces are presented.

Keywords

Photo-responsive surface Superwetting Nanomaterials Liquid actuation Separation 

Notes

Acknowledgments

The authors are grateful for financial support from the Chinese National Natural Science Foundation (21671012, 21373001, 21601013), Beijing Natural Science Foundation (2172033), the 973 Program (2013CB933004), the Fundamental Research Funds for the Central Universities, and the 111 Project (B14009).

References

  1. Abrakhi S, Péralta S, Fichet O, Teyssié D, Cantin S (2013) Poly(azobenzene acrylate-co-fluorinated acrylate) spin-coated films: influence of the composition on the photo-controlled wettability. Langmuir 29:9499–9509CrossRefGoogle Scholar
  2. Baigl D (2012) Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12:3637–3653CrossRefGoogle Scholar
  3. Berná J, Leigh DA, Lubomska M, Mendoza SM, Pérez EM, Rudolf P (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4:704–710CrossRefGoogle Scholar
  4. Blasco E, Piñol M, Oriol L, Schmidt BVKJ, Welle A, Trouillet V (2013) Photochemical generation of light responsive surfaces. Adv Funct Mater 23:4011–4019CrossRefGoogle Scholar
  5. Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256:1539–1541CrossRefGoogle Scholar
  6. Chen L, Wang W, Su B, Wen Y, Li C, Zhou Y, Li M, Shi X, Du H, Song Y, Jiang L (2014) A light-responsive release platform by controlling the wetting behavior of hydrophobic surface. ACS Nano 8:744–751CrossRefGoogle Scholar
  7. Chen K, Zhou S, Yang S, Wu L (2015) Fabrication of all water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv Funct Mater 25:1035–1041CrossRefGoogle Scholar
  8. Chen L, He C, Huang Y, Huang J, Zhang Y, Gao Y (2016) Poss based fluorinated azobenzene-containing polymers: photo-responsive behavior and evaluation of water repellency. J Appl Polym Sci 133:43540Google Scholar
  9. Choi W, Tuteja A, Chhatre S, Mabry JM, Cohen RE, Mckinley GH (2009) Fabrics with tunable oleophobicity. Adv Mater 21:2190–2195CrossRefGoogle Scholar
  10. Di H, Arisaka Y, Masuda K, Yamamoto M, Takeda N (2017) A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer. Acta Biomater 51:101–111CrossRefGoogle Scholar
  11. Dong T, Cao S, Xu G (2016) Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water. J Hazard Mater 305:1–7CrossRefGoogle Scholar
  12. Fan X, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858CrossRefGoogle Scholar
  13. Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc 126:62–63CrossRefGoogle Scholar
  14. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44:5115–5118CrossRefGoogle Scholar
  15. Feng SL, Hou YP, Xue Y, Gao LC, Jiang L, Zheng YM (2013) Photo-controlled water gathering on bio-inspired fibers. Soft Matter 9:9294–9297CrossRefGoogle Scholar
  16. Fries K, Samanta S, Orski S, Locklin J (2008) Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers. Chem Commun (47):6288–6300Google Scholar
  17. Gao LY, Zheng MJ, Zhong M, Li M, Ma L (2007) Preparation and photoinduced wettability conversion of superhydrophobic β-Ga2O3 nanowire film. Appl Phys Lett 91:013101CrossRefGoogle Scholar
  18. Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J (2014) Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8:6344–6352CrossRefGoogle Scholar
  19. Gondal MA, Sadullah MS, Dastageer MA, Mckinley GH, Panchanathan D, Varanasi KK (2014) Study of factors governing oil-water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions. ACS Appl Mater Interfaces 6:13422–13429CrossRefGoogle Scholar
  20. Guo M, Peng D, Cai S (2007) Highly hydrophilic and superhydrophobic ZnO nanorod array films. Thin Solid Films 515:7162–7166CrossRefGoogle Scholar
  21. Hersey JS, Freedman JD, Grinstaff MW (2014) Photoactive electrospun polymeric meshes: spatiotemporally wetting of textured 3-dimensional structures. J Mater Chem B 2:2974–2977CrossRefGoogle Scholar
  22. Huang J, Lai Y, Wang L, Li S, Ge M, Zhang K (2014) Controllable wettability and adhesion on bioinspired multifunctional TiO2 nanostructure surfaces for liquid manipulation. J Mater Chem A 2:18531–18538CrossRefGoogle Scholar
  23. Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288:1624–1626CrossRefGoogle Scholar
  24. Ikbal M, Banerjee R, Barman S, Atta S, Dhara D, Singh NDP (2014) 1-acetylferroceneoxime-based photoacid generators: application towards sol-gel transformation and development of photoresponsive polymer for controlled wettability and patterned surfaces. J Mater Chem C 2:4622–4630CrossRefGoogle Scholar
  25. Ionov L, Minko S, Stamm M, Gohy J, Jérôme R, Scholl A (2003) Reversible chemical patterning on stimuli-responsive polymer film: environment-responsive lithography. J Am Chem Soc 125:8302–8306CrossRefGoogle Scholar
  26. Jiang W, Wang G, He Y, Wang X, An Y, Song Y (2005) Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. Chem Commun (28):3550–3552Google Scholar
  27. Jo H, Haberkorn N, Pan JA, Vakili M, Nielsch K, Theato P (2016) Fabrication of chemically tunable, hierarchically branched polymeric nanostructures by multi-branched anodic aluminum oxide templates. Langmuir 32:6437–6444CrossRefGoogle Scholar
  28. Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55:11183–11187CrossRefGoogle Scholar
  29. Kessler D, Jochum FD, Choi J, Char K, Theato P (2011) Reactive surface coatings based on polysilsesquioxanes: universal method toward light-responsive surfaces. ACS Appl Mater Interfaces 3:124–128CrossRefGoogle Scholar
  30. Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRefGoogle Scholar
  31. Lai Y, Lin C, Wang H, Huang J, Zhuang H, Sun L (2008) Superhydrophilic-superhydrophobic micropattern on TiO2, nanotube films by photocatalytic lithography. Electrochem Commun 10:387–391CrossRefGoogle Scholar
  32. Li XM, Reinhoudt D, Cregocalama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368CrossRefGoogle Scholar
  33. Li C,Zhang Y,Ju J,Cheng F, Liu M,Jiang L,Yu Y (2012a) In situ fully light-driven switching of superhydrophobic adhesion. Adv Funct Mater 22:760–763CrossRefGoogle Scholar
  34. Li C, Cheng F, Lv J, Zhao Y, Liu M, Jiang L, Yu Y (2012b) Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. Soft Matter 8:3730–3733CrossRefGoogle Scholar
  35. Li J, Ling J, Yan L, Wang Q, Zha F, Lei Z (2014) UV mask irradiation and heat induced switching on-off water transportation on superhydrophobic carbon nanotube surfaces. Surf Coat Tech 258:142–145CrossRefGoogle Scholar
  36. Lim HS, Han JT, Kwak D, Jin M, Cho K (2006) Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J Am Chem Soc 128:14458–14459CrossRefGoogle Scholar
  37. Liu KL, Yao X, Jiang L (2010a) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255PubMedPubMedCentralGoogle Scholar
  38. Liu M, Zheng Y, Zhai J, Jiang L (2010c) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43:368–377CrossRefGoogle Scholar
  39. Liu Y, Bo X, Sun S, Jia W, Wu L, Yu Y (2017) Humidity and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv Mater 29:1604792CrossRefGoogle Scholar
  40. Lv JA, Liu Y, Wei J, Chen E, Qin L, Yu Y (2016) Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537:179–184CrossRefGoogle Scholar
  41. Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Cheminform abstract: preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv Mater 31:1365–1368Google Scholar
  42. Nakata K, Nishimoto S, Kubo A, Tryk D, Ochiai T, Murakami T (2009) Fabrication and application of TiO2-based superhydrophilic-superhydrophobic patterns on titanium substrates for offset printing. Chem Asian J 4:984–988CrossRefGoogle Scholar
  43. Nakata K, Nishimoto S, Yuda Y, Ochiai T, Murakami T, Fujishima A (2010) Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate. Langmuir 26:11628–11630CrossRefGoogle Scholar
  44. Nishimoto S, Sekine H, Zhang X, Liu Z, Nakata K, Murakami T (2009a) Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures. Langmuir 25:7226–7228CrossRefGoogle Scholar
  45. Nishimoto S, Kubo A, Nohara K, Zhang X, Taneichi N, Okui T, Liu Z, Nakata K, Sakai H, Murakami T, Abe M, Komine T, Fujishima A (2009b) TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Appl Surf Sci 255:6221–6225CrossRefGoogle Scholar
  46. Nishimoto S, Becchaku M, Kameshima Y, Shirosaki Y, Hayakawa S, Osaka A (2014) TiO2-based superhydrophobic–superhydrophilic pattern with an extremely high wettability contrast. Thin Solid Films 558:221–226CrossRefGoogle Scholar
  47. Pan S, Ni M, Mu B, Li Q, Hu X, Lin C (2015) Well defined pillararene-based azobenzene liquid crystalline photoresponsive materials and their thin films with photomodulated surfaces. Adv Funct Mater 25:3571–3580CrossRefGoogle Scholar
  48. Paven M, Mayama H, Sekido T, Butt H, Nakamura Y, Fujii S (2016) Liquid marbles: light-driven delivery and release of materials using liquid marbles. Adv Funct Mater 26:3372–3372CrossRefGoogle Scholar
  49. Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99CrossRefGoogle Scholar
  50. Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4:224–240CrossRefGoogle Scholar
  51. Rohit R, Devens GAAG, Mark HJLT, Tclement T (2004) Lotus effect amplifies light-induced contact angle switching. J Phys Chem B 108:12640–12642CrossRefGoogle Scholar
  52. Sawai Y, Nishimoto S, Kameshima Y, Fujii E, Miyake M (2013) Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir 29:6784–6789CrossRefGoogle Scholar
  53. Sun T, Qing G, Su B, Jiang L (2011) Functional biointerface materials inspired from nature. Chem Soc Rev 40:2909–2921CrossRefGoogle Scholar
  54. Tadanaga K, Morinaga J, Atsunori Matsuda A, Minami T (2004) Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem Mater 12:590–592CrossRefGoogle Scholar
  55. Takase K,Hyodo K,Morimoto M,Kojima Y,Mayama H,Yokojima S,Nakamuraf S, Uchida K (2016) Photoinduced reversible formation of a superhydrophilic surface by crystal growth of diarylethene. Chem Commun 52:6885–6887CrossRefGoogle Scholar
  56. Tao M, Xue L, Liu F, Jiang L (2014) An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv Mater 26:2943–2948CrossRefGoogle Scholar
  57. Tian D, Zhang X, Tian Y, Wu Y, Wang X, Zhai J (2012) Photo-induced water-oil separation based on switchable superhydrophobicity- superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. J Mater Chem 22:19652–19657CrossRefGoogle Scholar
  58. Tian DL, Song YL, Jiang L (2013a) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42:5184–5209PubMedPubMedCentralGoogle Scholar
  59. Tian D, Guo Z, Wang Y, Li W, Zhang X, Jin Z (2013b) Phototunable underwater oil adhesion of micro/nanoscale hierarchical-structured ZnO mesh films with switchable contact mode. Adv Funct Mater 24:536–542CrossRefGoogle Scholar
  60. Tian Y, Su B, Jiang L (2014) Interfacial material system exhibiting superwettability. Adv Mater 26:6872–6897CrossRefGoogle Scholar
  61. Tylkowski B, Peris S, Giamberini M, Garcia-Valls R, Reina JA, Ronda JC (2010) Light-induced switching of the wettability of novel asymmetrical poly(vinyl-alcohol)-co-ethylene membranes blended with azobenzene polymers. Langmuir 26:14821–14829CrossRefGoogle Scholar
  62. Ueda E, Levkin PA (2013) Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater 25:1234–1247CrossRefGoogle Scholar
  63. Wagner N, Theato P (2014) Light-induced wettability changes on polymer surfaces. Polymer 55:3436–3453CrossRefGoogle Scholar
  64. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A (1997) Light-induced amphiphilic surfaces. Nature 388:431–432CrossRefGoogle Scholar
  65. Wang S, Feng X, Yao J, Jiang L (2006) Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed 45:1264–1267CrossRefGoogle Scholar
  66. Wang S, Song YL, Jiang L (2007) Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C 8:18–29Google Scholar
  67. Wang S, Liu K, Xi Y, Lei J (2015) Bioinspired surfaces with superwettability: new insight on theory, design and applications. Chem Rev 115:8230–8293Google Scholar
  68. Waugh DG, Lawrence J (2010) On the use of co laser induced surface patterns to modify the wettability of poly(methyl methacrylate) (pmma). Opt Lasers Eng 48:707–715CrossRefGoogle Scholar
  69. Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399CrossRefGoogle Scholar
  70. Wooh S, Koh JH, Lee S, Yoon H, Char K (2015) Trilevel-structured superhydrophobic pillar arrays with tunable optical functions. Adv Funct Mater 24:5550–5556CrossRefGoogle Scholar
  71. Xia D, Johnson LM, López GP (2012) Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications. Adv Mater 24:1287–1302CrossRefGoogle Scholar
  72. Xin B, Hao J (2010) Reversibly switchable wettability. Chem Soc Rev 39:769–782CrossRefGoogle Scholar
  73. Xu QF, Liu Y, Lin FJ, Mondal B, Lyons AM (2013) Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl Mater Interfaces 5:8915–8924CrossRefGoogle Scholar
  74. Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460CrossRefGoogle Scholar
  75. Yan L, Li J, Li W, Zha F, Feng H, Hu D (2016) A photo-induced ZnO coated mesh for on-demand oil/water separation based on switchable wettability. Mater Lett 163:247–249CrossRefGoogle Scholar
  76. Yang D, Piech M, Bell NS, Gust D, Vail S, Garcia AA, Schneider J, Park C-D, Hayes MA, Picraux ST (2007) Photon control of liquid motion on reversibly photoresponsive surfaces. Langmuir 23:10864–10872CrossRefGoogle Scholar
  77. Yang P, Wang K, Liang Z, Mai W, Wang CX, Xie W (2012) Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects. Nanoscale 4:5755–5760CrossRefGoogle Scholar
  78. Yao X, Song YL, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734CrossRefGoogle Scholar
  79. Yilmaz M, Kuloglu HB, Erdogan H, Cetin SS, Yavuz MS, Ince GO (2015) Light-driven unidirectional liquid motion on anisotropic gold nanorod arrays. Adv Mater Interfaces 2:1500226CrossRefGoogle Scholar
  80. Zhang J, Han Y (2010) Active and responsive polymer surfaces. Chem Soc Rev 39:676–693CrossRefGoogle Scholar
  81. Zhang X, Jin M, Liu Z, Tryk DA, Nishimoto S, Murakami T (2007) Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J Phys Chem C 111:14521–14529CrossRefGoogle Scholar
  82. Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633CrossRefGoogle Scholar
  83. Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mater Chem 19:4887–4895CrossRefGoogle Scholar
  84. Zhu W, Feng X, Feng L, Jiang L (2006) UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chem Commun (26):2753–2755Google Scholar
  85. Zhu H, Yang S, Chen D, Li N, Xu Q, Li H (2016) A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery. Adv Mater Interfaces 3:1500683CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Biomedical Engineering, School of ChemistryBeihang UniversityBeijingChina
  2. 2.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations