Stimuli-Responsive Mussel-Inspired Polydopamine Material

  • Mikyung Shin
  • Younseon Wang
  • Haeshin LeeEmail author
Part of the Biologically-Inspired Systems book series (BISY, volume 11)


The first material-independent surface chemistry called polydopamine coating was introduced in Chap.  14. Surface properties for a given material can be controlled by the coating. Therefore, one can provide stimuli-responsiveness on a surface level by co-immobilization of chemical moieties that are sensitive to light, pH, temperature, or humidity when performing polydopamine coating. Alternatively, covalent conjugations of stimuli-responsive functional groups to dopamine hydrochloride result in preparations of series of dopamine derivatives. One-step coating of these derivatives becomes general methods to incorporating stimuli-responsive properties on virtually any material surfaces. This chapter provides detail information on this topic.


Polydopamine Surface chemistry Light-sensitive pH-sensitive Temperature-sensitive Humidity-sensitive Stimuli-responsiveness 


  1. Ai Y, Nie J, Wu G, Yang D (2014) The DOPA-functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. J Appl Polym Sci 131:41102CrossRefGoogle Scholar
  2. Baraldi P, Capelletti R, Crippa PR, Romeo N (1979) Electrical characteristics and electret behavior of melanin. J Electrochem Soc 126:1207–1212CrossRefGoogle Scholar
  3. Barrett DG, Bushnell GG, Messersmith PB (2013) Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv Healthc Mater 2:745–755CrossRefGoogle Scholar
  4. Capozzi V, Perna G, Carmone P, Gallone A, Lastella M, Mezzenga E, Quartucci G, Ambrico M, Augelli V, Biagi PF, Ligonzo T, Minafra A, Schiavulli L, Pallara M, Cicero R (2006) Optical and photoelectronic properties of melanin. Thin Solid Films 511-512:362–366CrossRefGoogle Scholar
  5. d’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron JC, Kovacs D, Meredith P, Pezzella A, Picardo M, Sarna T, Simon JD, Ito S (2013) Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res 26:616–633CrossRefGoogle Scholar
  6. GhavamiNejad A, SamariKhalaj M, Aguilar LE, Park CH, Kim CS (2016a) pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy. Sci Rep 6:33594CrossRefGoogle Scholar
  7. GhavamiNejad A, Hashmi S, Vatankhah-Varnoosfaderani M, Stadler FJ (2016b) Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels. Rheol Acta 55:163–176CrossRefGoogle Scholar
  8. Han L, Zhang Y, Lu X, Wang K, Wang Z, Zhang H (2016) Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl Mater Interfaces 8:29088–29100CrossRefGoogle Scholar
  9. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16CrossRefGoogle Scholar
  10. Kim Y-J, Tachibana M, Umezu M, Matsunaga YT (2016a) Bio-inspired smart hydrogel with temperature-dependent properties and enhanced cell attachment. J Mater Chem B 4:1740–1746CrossRefGoogle Scholar
  11. Kim YK, Sharker SM, In I, Park SY (2016b) Surface coated fluorescent carbon nanoparticles/TiO2 as visible-light sensitive photocatalytic complexes for antifouling activity. Carbon 103:412–420CrossRefGoogle Scholar
  12. Lee SH, Lee Y, Lee SW, Ji HY, Lee JH, Lee DS, Park TG (2011) Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomater 7:1468–1476CrossRefGoogle Scholar
  13. Lee H-C, Wang C-Y, Lin C-H (2014) High-performance humidity sensors utilizing dopamine biomolecule-coated gold nanoparticles. Sensors Actuators B Chem 191:204–210CrossRefGoogle Scholar
  14. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359CrossRefGoogle Scholar
  15. Lu D, Zhang Y, Li T, Li Y, Wang H, Shen Z, Wei Q, Lei Z (2016) The synthesis and tissue adhesiveness of temperature-sensitive hyperbranched poly(amino acid)s with functional side groups. Polym Chem 7:1963–1970CrossRefGoogle Scholar
  16. Mostert AB, Powell BJ, Pratt FL, Hanson GR, Sarna T, Gentle IR, Meredith P (2012) Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc Natl Acad Sci U S A 109:8943–8947CrossRefGoogle Scholar
  17. Nam HJ, Cha J, Lee SH, Yoo WJ, Jung DY (2014) A new mussel-inspired polydopamine phototransistor with high photosensitivity: signal amplification and light-controlled switching properties. Chem Commun (Camb) 50:1458–1461CrossRefGoogle Scholar
  18. Samyn P, Shroff K, Prucker O, Rühe J, Biesalski M (2014) Colorimetric sensing properties of catechol-functional polymerized vesicles in aqueous solution and at solid surfaces. Colloids Surf A Physicochem Eng Asp 441:242–254CrossRefGoogle Scholar
  19. Shafiq Z, Cui J, Pastor-Perez L, San Miguel V, Gropeanu RA, Serrano C, del Campo A (2012) Bioinspired underwater bonding and debonding on demand. Angew Chem Int Ed Engl 51:4332–4335CrossRefGoogle Scholar
  20. Shao H, Stewart RJ (2010) Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv Mater 22:729–733CrossRefGoogle Scholar
  21. Tanaka M, Iwasaki Y (2016) Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion. Acta Biomater 40:54–61CrossRefGoogle Scholar
  22. Tofan-Lazar J, Situm A, HA A-A (2013) DRIFTS studies on the role of surface water in stabilizing catechol-iron(III) complexes at the gas/solid interface. J Phys Chem A 117:10368–10380CrossRefGoogle Scholar
  23. Vatankhah-Varnoosfaderani M, Hashmi S, GhavamiNejad A, Stadler FJ (2014) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron–catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5:512–523CrossRefGoogle Scholar
  24. Wang Y-Z, Li L, Du F-S, Li Z-C (2015) A facile approach to catechol containing UV dismantlable adhesives. Polymer 68:270–278CrossRefGoogle Scholar
  25. White EM, Seppala JE, Rushworth PM, Ritchie BW, Sharma S, Locklin J (2013) Switching the adhesive state of catecholic hydrogels using phototitration. Macromolecules 46:8882–8887CrossRefGoogle Scholar
  26. Wu T-F, Hong J-D (2016) Synthesis of water-soluble dopamine–melanin for ultrasensitive and ultrafast humidity sensor. Sensors Actuators B Chem 224:178–184CrossRefGoogle Scholar
  27. Wu Y, Liu Z, Liang Y, Pei X, Zhou F, Xue Q (2014) Photoresponsive superhydrophobic coating for regulating boundary slippage. Soft Matter 10:5318–5324CrossRefGoogle Scholar
  28. Wu T-F, Wee B-H, Hong J-D (2015) An ultrasensitive and fast moisture sensor based on self-assembled dopamine–melanin thin films. Adv Mater Interfaces 2:1500203CrossRefGoogle Scholar
  29. Wünsche J, Deng Y, Kumar P, Di Mauro E, Josberger E, Sayago J, Pezzella A, Soavi F, Cicoira F, Rolandi M, Santato C (2015) Protonic and electronic transport in hydrated thin films of the pigment eumelanin. Chem Mater 27:436–442CrossRefGoogle Scholar
  30. Xiao M, Li Y, Zhao J, Wang Z, Gao M, Gianneschi NC, Dhinojwala A, Shawkey MD (2016) Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles. Chem Mater 28:5516–5521CrossRefGoogle Scholar
  31. Zhang H, Zhao T, Newland B, Duffy P, Annaidh AN, O’Cearbhaill ED, Wang W (2015) On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. J Mater Chem B 3:6420–6428CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations