Advertisement

Taxonomy-Based Detection of User Emotions for Advanced Artificial Intelligent Applications

  • Alfredo Cuzzocrea
  • Giovanni Pilato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10870)

Abstract

Catching the attention of a new acquaintance and empathize with her can improve the social skills of a robot. For this reason, we illustrate here the first step towards a system which can be used by a social robot in order to “break the ice” between a robot and a new acquaintance. After a training phase, the robot acquires a sub-symbolic coding of the main concepts being expressed in tweets about the IAB Tier-1 categories. Then this knowledge is used to catch the new acquaintance interests, which let arouse in her a joyful sentiment. The analysis process is done alongside a general small talk, and once the process is finished, the robot can propose to talk about something that catches the attention of the user, hopefully letting arise in him a mix of feelings which involve surprise and joy, triggering, therefore, an engagement between the user and the social robot.

References

  1. 1.
    Agostaro, F., Augello, A., Pilato, G., Vassallo, G., Gaglio, S.: A conversational agent based on a conceptual interpretation of a data driven semantic space. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 381–392. Springer, Heidelberg (2005).  https://doi.org/10.1007/11558590_39CrossRefGoogle Scholar
  2. 2.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Brethes, L., Menezes, P., Lerasle, F., Hayet, J.: Face tracking and hand gesture recognition for human-robot interaction. In: IEEE International Conference on Robotics and Automation, vol 2, pp 1901–1906. IEEE (2004)Google Scholar
  4. 4.
    Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for robot self consciousness. Artif. Intell. Med. 44(2), 147–154 (2008)CrossRefGoogle Scholar
  5. 5.
    Cannataro, M., Cuzzocrea, A., Pugliese, A.: A probabilistic approach to model adaptive hypermedia systems. In: 1st International Workshop on Web Dynamics, in conjunction on ICDT 2001 (2001)Google Scholar
  6. 6.
    Corrigan, L.J., Peters, C., Küster, D., Castellano, G.: Engagement perception and generation for social robots and virtual agents. In: Esposito, A., Jain, L.C. (eds.) Toward Robotic Socially Believable Behaving Systems - Volume I. ISRL, vol. 105, pp. 29–51. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31056-5_4CrossRefGoogle Scholar
  7. 7.
    Cuzzocrea, A., Fortino, G., Rana, O.: Managing Data and processes in cloud-enabled large-scale sensor networks: state-of-the-art and future research directions. In: 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2013, pp. 583–588 (2013)Google Scholar
  8. 8.
    D’Avanzo, E., Pilato, G.: Mining social network users opinions’ to aid buyers’ shopping decisions. Comput. Hum. Behav. 51, 1284–1294 (2014)CrossRefGoogle Scholar
  9. 9.
    D’Avanzo E., Pilato G., Lytras M.D.: Using Twitter sentiment and emotions analysis of Google trends for decisions making. Program 51(3), 322–350 (2017)CrossRefGoogle Scholar
  10. 10.
    Darling, W.M.: A theoretical and practical implementation tutorial on topic modeling and gibbs sampling. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 642–647, 1 Dec 2011Google Scholar
  11. 11.
    Delaherche, E., Dumas, G., Nadel, J., Chetouani, M.: Automatic measure of imitation during social interaction: a behavioral and hyperscanning-EEG benchmark. Pattern Recognit. Lett. 66, 118–126 (2015)CrossRefGoogle Scholar
  12. 12.
    Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17, 124 (1971)CrossRefGoogle Scholar
  13. 13.
    Interactive Advertising Bureau (IAB) Contextual Taxonomy. http://www.iab.net/. Retrieved December 2017
  14. 14.
    Kanagasabai, R., Veeramani, A., Ngan, L.D., Yap, G.E., Decraene, J., Nash, A.S.: Using semantic technologies to mine customer insights in telecom industry. In: International Semantic Web Conference (Industry Track) (2014)Google Scholar
  15. 15.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104(2), 211–223 (1990)CrossRefGoogle Scholar
  16. 16.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25, 259–284 (1998)CrossRefGoogle Scholar
  17. 17.
    Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, pp. 627–665. CRC Press (2010)Google Scholar
  18. 18.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  19. 19.
    Petherbridge, N.: Artifical Intelligence Scripting Language. Rivescript.com
  20. 20.
    Pilato, G., D’Avanzo, E.: Data-driven social mood analysis through the conceptualization of emotional fingerprints. Procedia Comput. Sci. 123, 360–365 (2018)CrossRefGoogle Scholar
  21. 21.
    Santilli, S., Nota, L., Pilato, G.: The use of latent semantic analysis in the positive psychology: a comparison with Twitter posts. In: 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pp. 494–498. IEEE (2017)Google Scholar
  22. 22.
    Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 70–74. Association for Computational Linguistics (2007)Google Scholar
  23. 23.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: SAC 2008 Proceedings of the 2008 ACM Symposium on Applied Computing (2008)Google Scholar
  24. 24.
    Siddharth, G., Borkar, D., De Mello, C., Patil, S.: An E-Commerce Website based Chatbot. Proc. (IJCSIT) Int. J. Comput. Sci. Inf. Technol. 6(2), 1483–1485 (2015)Google Scholar
  25. 25.
    Teh, Y.W., Newman, D., Welling, M.: A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation. NIPS 6, 1378–1385 (2006)Google Scholar
  26. 26.
    Terrana, D., Augello, A., Pilato, G.: Facebook users relationships analysis based on sentiment classification. In: Proceedings of 2014 IEEE International Conference on Semantic Computing (ICSC), pp. 290–296 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of TriesteTriesteItaly
  2. 2.ICAR-CNRRendeItaly

Personalised recommendations