Advertisement

Optical Coherence Tomography for Fingerprint Presentation Attack Detection

  • Yaseen MoollaEmail author
  • Luke Darlow
  • Ameeth Sharma
  • Ann Singh
  • Johan van der Merwe
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

New research in fingerprint biometrics uses optical coherence tomography (OCT) technology to acquire fingerprints from where they originate below the surface of the skin. The penetrative nature of this technology means that rich information is available regarding the structure of the skin. This access, in turn, enables new techniques in detecting spoofing attacks, and therefore also introduces mitigation steps against current presentation attack methods. These techniques include the ability to detect fake fingers; fake layers applied above the skin; differentiate between fakes and surface skin conditions; and liveness detection based on, among others, the analysis of eccrine glands and capillary blood flow from below the surface of the skin. Through advances in the OCT hardware and processing techniques, one has increased capabilities to capture large fingerprint volumes at a reasonable speed at the relevant necessary resolution to detect current known attempts at spoofing. The nature of OCT and the data it produces means that a truly high-security fingerprint acquisition system may exist in the future. This work serves to detail current research in this domain.

References

  1. 1.
    Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  2. 2.
    Breckenridge K (2005) The biometric state: the promise and peril of digital government in the new South Africa. J S Afr Stud 31(2):267–282CrossRefGoogle Scholar
  3. 3.
    Mthethwa S, Barbour G, Thinyane M (2016) An improved smartcard for the South African social security agency (SASSA): a proof of life based solution. In: 2016 international conference on information science and security (ICISS). IEEE, pp 1–4Google Scholar
  4. 4.
    Anand A, Labati RD, Genovese A, Munoz E, Piuri V, Scotti F, Sforza G (2016) Enhancing fingerprint biometrics in automated border control with adaptive cohorts. In: 2016 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1–8Google Scholar
  5. 5.
    Jain AK, Cao K, Arora SS (2014) Recognizing infants and toddlers using fingerprints: increasing the vaccination coverage. In: 2014 IEEE international joint conference on biometrics (IJCB). IEEE, pp 1–8Google Scholar
  6. 6.
    Yukawa M (2004) Home security system. US Patent App. 10/909,354Google Scholar
  7. 7.
    British Broadcasting Corporation (BBC): credit card with a fingerprint sensor revealed by Mastercard (2017). http://www.bbc.com/news/technology-39643453. Accessed 15 August 2017
  8. 8.
    Sussman A, Cukic B, McKeown P, Becker K, Zektser G, Bataller C (2012) IEEE certified biometrics professional (CBP) learning system. Module 3: biometric system design and evaluation. IEEEGoogle Scholar
  9. 9.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science (New York, NY) 254(5035):1178CrossRefGoogle Scholar
  10. 10.
    Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117(1–2):43–48CrossRefGoogle Scholar
  11. 11.
    Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS, Schuman JS (2011) Optical coherence tomography: history, current status, and laboratory work. Investig Ophthalmol Vis Sci 52(5):2425–2436CrossRefGoogle Scholar
  12. 12.
    Verga N, Mirea D, Busca I, Poroschianu M, Zarma S, Grînişteanu L, Gheorghe C, Stan C, Verga M, Vasilache R (2014) Optical coherence tomography in oncological imaging. Romanian Rep Phys 66(1):75–86Google Scholar
  13. 13.
    Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7(1):1–9CrossRefGoogle Scholar
  14. 14.
    Hamdan R, Gonzalez RG, Ghostine S, Caussin C (2012) Optical coherence tomography: from physical principles to clinical applications. Arch Cardiovasc Dis 105(10):529–534CrossRefGoogle Scholar
  15. 15.
    Ju MJ, Lee SJ, Min EJ, Kim Y, Kim HY, Lee BH (2010) Evaluating and identifying pearls and their nuclei by using optical coherence tomography. Opt Express 18(13):13,468–13,477CrossRefGoogle Scholar
  16. 16.
    Liang H, Cid MG, Cucu RG, Dobre G, Podoleanu AG, Pedro J, Saunders D (2005) En-face optical coherence tomography-a novel application of non-invasive imaging to art conservation. Opt Express 13(16):6133–6144CrossRefGoogle Scholar
  17. 17.
    Darlow LN, Singh A, Moolla Y (2016) Damage invariant and high security acquisition of the internal fingerprint using optical coherence tomography. In: World congress on internet securityGoogle Scholar
  18. 18.
    Sharma A, Singh A, Roberts T, Ramokolo R, Strauss H (2016) A high speed OCT system developed at the CSIR national laser centre. In: The 61st annual conference of the South African institute of physics. University of Cape TownGoogle Scholar
  19. 19.
    Darlow LN, Connan J, Singh A (2016) Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans. In: 2016 international conference on biometrics (ICB). IEEE, pp 1–8Google Scholar
  20. 20.
    Siddiqui M, Tozburun S, Vakoc BJ (2016) Simultaneous high-speed and long-range imaging with optically subsampled OCT (conference presentation). In: SPIE BiOS, pp 96,970–96,970 (International society for optics and photonics)Google Scholar
  21. 21.
    Babler WJ (1991) Embryologic development of epidermal ridges and their configurations. Birth Defects Orig Artic Ser 27(2):95–112Google Scholar
  22. 22.
    Cable News Network (CNN): Hackers recreate fingerprints using public photos (2014). http://money.cnn.com/2014/12/30/technology/security/fingerprint-hack/index.html. Accessed 7 August 2017
  23. 23.
    Galbally J, Fierrez J, Ortega-Garcia J, Cappelli R (2014) Fingerprint anti-spoofing in biometric systems. Handbook of biometric anti-spoofing. Springer, Berlin, pp 35–64Google Scholar
  24. 24.
    Cheng Y, Larin KV (2006) Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis. Appl Opt 45(36):9238–9245CrossRefGoogle Scholar
  25. 25.
    Cheng Y, Larin KV (2007) In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography. IEEE Photonics Technol Lett 19(20):1634–1636CrossRefGoogle Scholar
  26. 26.
    Chang S, Cheng Y, Larin KV, Mao Y, Sherif S, Flueraru C (2008) Optical coherence tomography used for security and fingerprint-sensing applications. IET Image Process 2(1):48–58CrossRefGoogle Scholar
  27. 27.
    Bossen A, Lehmann R, Meier C (2010) Internal fingerprint identification with optical coherence tomography. IEEE Photonics Technol Lett 22(7):507–509CrossRefGoogle Scholar
  28. 28.
    Liu M, Buma T (2010) Biometric mapping of fingertip eccrine glands with optical coherence tomography. IEEE Photonics Technol Lett 22(22):1677–1679Google Scholar
  29. 29.
    Jain AK, Chen Y, Demirkus M (2007) Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans Pattern Anal Mach Intell 29(1):15–27CrossRefGoogle Scholar
  30. 30.
    Nasiri-Avanaki MR, Meadway A, Bradu A, Khoshki RM, Hojjatoleslami A, Podoleanu AG (2011) Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography. Opt Photonics J 1(03):91CrossRefGoogle Scholar
  31. 31.
    Liu G, Chen Z (2013) Capturing the vital vascular fingerprint with optical coherence tomography. Appl Opt 52(22):5473–5477CrossRefGoogle Scholar
  32. 32.
    Dsouza RI, Zam A, Subhash HM, Larin KV, Leahy M (2013) In vivo microcirculation imaging of the sub surface fingertip using correlation mapping optical coherence tomography (cmOCT). In: SPIE BiOS, pp 85,800M–1–85,800M–5 (International society for optics and photonics)Google Scholar
  33. 33.
    Jonathan E, Enfield J, Leahy MJ (2011) Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J Biophotonics 4(9):583–587Google Scholar
  34. 34.
    McNamara PM, Dsouza R, ORiordan C, Collins S, OBrien P, Wilson C, Hogan J, Leahy MJ (2016) Development of a first-generation miniature multiple reference optical coherence tomography imaging device. J Biomed Opt 21(12):126,020–126,020CrossRefGoogle Scholar
  35. 35.
    Ingress: innovative technology for fingerprint live scanners (2017). http://www.ingress-project.eu/. Accessed 27 July 2017
  36. 36.
    Meissner S, Breithaupt R, Koch E (2013) Defense of fake fingerprint attacks using a swept source laser optical coherence tomography setup. In: SPIE LASE, pp 86,110L–1–86,110L–4 (International society for optics and photonics)Google Scholar
  37. 37.
    Sousedik C, Breithaupt R, Busch C (2013) Volumetric fingerprint data analysis using optical coherence tomography. In: 2013 international conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–6Google Scholar
  38. 38.
    Sousedik C, Busch C (2014) Presentation attack detection methods for fingerprint recognition systems: a survey. IET Biom 3(4):219–233CrossRefGoogle Scholar
  39. 39.
    Breithaupt R, Sousedik C, Meissner S (2015) Full fingerprint scanner using optical coherence tomography. In: International workshop on biometrics and forensics. IEEE, pp 1–6Google Scholar
  40. 40.
    Sousedik C, Busch C (2014) Quality of fingerprint scans captured using optical coherence tomography. In: International joint conference on biometrics. IEEE, pp 1–8Google Scholar
  41. 41.
    Sousedik C, Breithaupt R (2017) Full-fingerprint volumetric subsurface imaging using Fourier-domain optical coherence tomography. In: 2017 5th international workshop on biometrics and forensics (IWBF). IEEE, pp 1–6Google Scholar
  42. 42.
    Sousedik C, Breithaupt R, Bours P (2017) Classification of fingerprints captured using optical coherence tomography. In: Scandinavian conference on image analysis. Springer, pp 326–337Google Scholar
  43. 43.
    Darlow LN, Webb L, Botha N (2016) Automated spoof-detection for fingerprints using optical coherence tomography. Appl Opt 55:3387–3396CrossRefGoogle Scholar
  44. 44.
    Darlow LN, Connan J, Akhoury SS (2015) Internal fingerprint zone detection in optical coherence tomography fingertip scans. J Electron Imaging 24, 24 – 24 – 14 (2015).  https://doi.org/10.1117/1.JEI.24.2.023027CrossRefGoogle Scholar
  45. 45.
    Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL (2016) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1), 015,006CrossRefGoogle Scholar
  46. 46.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yaseen Moolla
    • 1
    Email author
  • Luke Darlow
    • 1
  • Ameeth Sharma
    • 1
  • Ann Singh
    • 1
  • Johan van der Merwe
    • 1
  1. 1.Council for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations