Advertisement

Recent Advances in Face Presentation Attack Detection

  • Sushil BhattacharjeeEmail author
  • Amir Mohammadi
  • André Anjos
  • Sébastien Marcel
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

The undeniable convenience of face recognition (FR) based biometrics has made it an attractive tool for access control in various application areas, from airports to remote banking. Widespread adoption of face biometrics, however, depends on the perception of robustness of such systems. One particular vulnerability of FR systems comes from presentation attacks (PA), where a subject A attempts to impersonate another subject B, by presenting, say, a photograph of B to the biometric sensor (i.e., the camera). PAs are the most likely forms of attacks on face biometric systems, as the camera is the only component of the biometric system that is exposed to the outside world. Presentation attack detection (PAD) methods provide an additional layer of security to FR systems. The first edition of the Handbook of Biometric Anti-Spoofing included two chapters on face-PAD. In this chapter we review the significant advances in face-PAD research since the publication of the first edition of this book. In addition to new face-PAD methods designed for color images, we also discuss advances involving other imaging modalities, such as near-infrared (NIR) and thermal imaging. Research on detecting various kinds of attacks, both planar as well as involving three-dimensional masks, is reviewed. The chapter also summarizes a number of recently published datasets for face-PAD experiments.

Notes

Acknowledgements

This work has been supported by the European H2020-ICT project TeSLA (grant agreement no. 688520), the project on Secure Access Control over Wide Area Networks (SWAN) funded by the Research Council of Norway (grant no. IKTPLUSS 248030/O70), and by the Swiss Center for Biometrics Research and Testing.

References

  1. 1.
    Ratha NK, Connell JH, Bolle RM (2001) An analysis of minutiae matching strength. In: Bigun J, Smeraldi F (eds) Audio- and video-based biometric person authentication. Springer, Heidelberg, pp 223–228Google Scholar
  2. 2.
    Hadid A (2014) Face biometrics under spoofing attacks: vulnerabilities, countermeasures, open issues, and research directions. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition workshops (cVPRW), pp 113 – 118Google Scholar
  3. 3.
    Ramachandra R, Raja KB, Venkatesh S, Cheikh FA, Büsch C (2017) On the vulnerability of extended multispectral face recognition systems towards presentation attacks. In: Proceedings of IEEE international conference on identity, security and behavior analysis (ISBA), pp 1 – 8.  https://doi.org/10.1109/ISBA.2017.7947698
  4. 4.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227.  https://doi.org/10.1109/TPAMI.2008.79CrossRefGoogle Scholar
  5. 5.
    Kanzawa Y, Kimura Y, Naito T (2011) Human skin detection by visible and near-infrared imaging. In: Proceedings of the 12th IAPR conference on machine vision applications, MVA 2011. Nara, JapanGoogle Scholar
  6. 6.
    Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: British machine vision conferenceGoogle Scholar
  7. 7.
    Wu X, He R, Sun Z (2015) A lightened CNN for deep face representation. CoRR. http://arxiv.org/abs/1511.02683, arXiv:1511.02683
  8. 8.
    Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition and clustering. CoRR. http://arxiv.org/abs/1503.03832, arXiv:1503.03832
  9. 9.
    Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical report 07–49, University of Massachusetts, Amherst (MA), USAGoogle Scholar
  10. 10.
    Mohammadi A, Bhattacharjee S, Marcel S (2018) Deeply vulnerable: a study of the robustness of face recognition to presentation attacks. IET Biom 7(1):15–26.  https://doi.org/10.1049/iet-bmt.2017.0079CrossRefGoogle Scholar
  11. 11.
    Ferrara M, Franco A, Maltoni D (2014) The magic passport. In: Proceedings of IEEE international joint conference on biometrics (IJCB).  https://doi.org/10.1109/BTAS.2014.6996240
  12. 12.
    Scherhag U, Nautsch A, Rathgeb C, Gomez-Barrero M, Veldhuis RNJ, Spreeuwers L, Schils M, Maltoni D, Grother F, Marcel S, Breithaupt R, Ramachandra R, Büsch C (2017) Biometric systems under morphing attacks: assessment of morphing techniques and vulnerability reporting. In: Proceedings of international conference of the biometrics special interest group (BIOSIG).  https://doi.org/10.23919/BIOSIG.2017.8053499
  13. 13.
    Ramachandra R, Raja KB, Büsch C (2016) Detecting morphed face images. In: Proceedings of IEEE 8th international conference on biometrics theory, applications and systems (BTAS), pp 1 – 7.  https://doi.org/10.1109/BTAS.2016.7791169
  14. 14.
    Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: Proceedings of the international conference of biometrics special interest group (BIOSIG)Google Scholar
  15. 15.
    Costa-Pazo A, Bhattacharjee S, Vazquez-Fernandez E, Marcel S (2016) The replay-mobile face presentation-attack database. In: Proceedings of international conference of the biometrics special interest group (BIOSIG).  https://doi.org/10.1109/BIOSIG.2016.7736936
  16. 16.
    Ramachandra R, Büsch C (2017) Presentation attack detection methods for face recognition systems - a comprehensive survey. ACM Comput Surv 50CrossRefGoogle Scholar
  17. 17.
    Rudd EM, Günther M, Boult TE (2016) PARAPH: presentation attack rejection by analyzing polarization hypotheses. In: IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 171 – 178.  https://doi.org/10.1109/CVPRW.2016.28
  18. 18.
    Boulkenafet Z, Komulainen J, Hadid A (2015) Face anti-spoofing based on color texture analysis. In: IEEE international conference on image processing (ICIP), pp 2636–2640Google Scholar
  19. 19.
    Määttä J, Hadid A, Pietikäinen M (2011) Face spoofing detection from single images using micro-texture analysis. In: Proceedings of international joint conference on biometrics (IJCB).  https://doi.org/10.1109/IJCB.2011.6117510
  20. 20.
    Boulkenafet Z, Komulainen J, Hadid A (2016) Face spoofing detection using colour texture analysis. IEEE Trans Inf Forensics Secur 11(8):1818–1830.  https://doi.org/10.1109/TIFS.2016.2555286CrossRefGoogle Scholar
  21. 21.
    Boulkenafet Z, Komulainen J, Hadid A (2018) On the generalization of color texture-based face anti-spoofing. Image Vis Comput. Accepted at the time of writingGoogle Scholar
  22. 22.
    Boulkenafet Z, Komulainen J, Li L, Feng X, Hadid A (2017) OULU-NPU: a mobile face presentation attack database with real-world variations. In: Proceedings of 12th IEEE international conference on automatic face and gesture recognition (FG 2017)Google Scholar
  23. 23.
    Wen D, Han H, Jain AK (2015) Face spoof detection with image distortion analysis. IEEE Trans Inf Forensics Secur 10(4):746–761CrossRefGoogle Scholar
  24. 24.
    Galbally J, Marcel S, Fierrez J (2014) Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Trans Image Process 23(2):710–724.  https://doi.org/10.1109/TIP.2013.2292332MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li Y, Po LM, Xu X, Feng L, Yuan F (2016) Face liveness detection and recognition using shearlet based feature descriptors. In: Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 874 – 877Google Scholar
  26. 26.
    Garcia DC, de Queiroz RL (2015) Face-spoofing 2D-detection based on Moiré-Pattern analysis. IEEE Trans Inf Forensics Secur 10(4):778–786.  https://doi.org/10.1109/TIFS.2015.2411394CrossRefGoogle Scholar
  27. 27.
    Patel K, Han H, Jain A (2016) Secure face unlock: spoof detection on smartphones. IEEE Trans Inf Forensics Secur 11(10):2268–2283.  https://doi.org/10.1109/TIFS.2016.2578288CrossRefGoogle Scholar
  28. 28.
    Tirunagari S, Poh N, Windridge D, Iorliam A, Suki N, Ho ATS (2015) Detection of face spoofing using visual dynamics. IEEE Trans Inf Forensics Secur 10(4):762–777.  https://doi.org/10.1109/TIFS.2015.2406533CrossRefGoogle Scholar
  29. 29.
    Anjos A, Chakka MM, Marcel S (2014) Motion-based counter-measures to photo attacks in face recognition. IET Biom 3(3):147–158.  https://doi.org/10.1049/iet-bmt.2012.0071CrossRefGoogle Scholar
  30. 30.
    Yang J, Lei Z, Li SZ (2014) Learn convolutional neural network for face anti-spoofing. CoRR. http://arxiv.org/abs/1408.5601, arXiv:1408.5601
  31. 31.
    Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25Google Scholar
  32. 32.
    Lucena O, Junior A, Hugo GMV, Souza R, Valle E, De Alencar Lotufo R (2017) Transfer learning using convolutional neural networks for face anti-spoofing. In: Karray F, Campilho A, Cheriet F (eds.) Proceedings of international conference on image analysis and recognition (ICIAR), Springer International Publishing, Cham, pp 27–34Google Scholar
  33. 33.
    Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR. http://arxiv.org/abs/1409.1556, arXiv:1409.1556
  34. 34.
    Menotti D, Chiachia G, Pinto A, Schwartz WR, Pedrini H, Falco A, Rocha A (2015) Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans Inf Forensics Secur 10(4):864–879.  https://doi.org/10.1109/TIFS.2015.2398817CrossRefGoogle Scholar
  35. 35.
    Nagpal C, Dubey SR (2018) A performance evaluation of convolutional neural networks for face anti spoofing. CoRR. https://arxiv.org/abs/1805.04176, arXiv:1805.04176
  36. 36.
    Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826.  https://doi.org/10.1109/CVPR.2016.308
  37. 37.
    He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778.  https://doi.org/10.1109/CVPR.2016.90
  38. 38.
    Li L, Xia Z, Li L, Jiang X, Feng X, Roli F (2017) Face anti-spoofing via hybrid convolutional neural network. In: Proceedings of international conference on the frontiers and advances in data science (FADS), pp 120–124.  https://doi.org/10.1109/FADS.2017.8253209
  39. 39.
    Nguyen TD, Pham TD, Baek NR, Park KR (2018) Combining deep and handcrafted image features for presentation attack detection in face recognition systems using visible-light camera sensors. J Sens 18(3):699–727.  https://doi.org/10.3390/s18030699CrossRefGoogle Scholar
  40. 40.
    Xu Z, Li S, Deng W (2015) Learning temporal features using LSTM-CNN architecture for face anti-spoofing. In: Proceedings of 3rd IAPR asian conference on pattern recognition (ACPR), pp 141–145.  https://doi.org/10.1109/ACPR.2015.7486482
  41. 41.
    Liu Y, Jourabloo A, Liu X (2018) Learning deep models for face anti-spoofing: binary or auxiliary supervision. In: Proceeding of IEEE computer vision and pattern recognition, Salt Lake City, USAGoogle Scholar
  42. 42.
    Chingovska I, dos Anjos AR (2015) On the use of client identity information for face antispoofing. IEEE Trans Inf Forensics Secur 10(4):787–796.  https://doi.org/10.1109/TIFS.2015.2400392CrossRefGoogle Scholar
  43. 43.
    Yang J, Lei Z, Yi D, Li SZ (2015) Person-specific face antispoofing with subject domain adaptation. IEEE Trans Inf Forensics Secur 10(4):797–809.  https://doi.org/10.1109/TIFS.2015.2403306CrossRefGoogle Scholar
  44. 44.
    Ge S, Li J, Ye Q, Luo Z (2017) Detecting masked faces in the wild with LLE-CNNs. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 426–434.  https://doi.org/10.1109/CVPR.2017.53
  45. 45.
    Wang S, Yun Fu Y (2016) Face behind makeup. In: Proceedings of the thirtieth conference of the association for the advancement of artificial intelligence, pp 58–64Google Scholar
  46. 46.
    Kose N, Apvrille L, Dugelay JL (2015) Facial makeup detection technique based on texture and shape analysis. In: Proceedings of 11th IEEE international conference on automatic face and gesture recognition, Ljubljana, Slovenia (FG). Ljubljana, SLOVENIA, 4–8 May 2015.  https://doi.org/10.1109/FG.2015.7163104. http://www.eurecom.fr/publication/4494
  47. 47.
    Agarwal A, Yadav D, Kohli N, Singh R, Vatsa M, Noore A (2017) Face presentation attack with latex masks in multispectral videos. In: Proceedings of IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 275–283.  https://doi.org/10.1109/CVPRW.2017.40
  48. 48.
    Boulkenafet Z et al (2017) A competition on generalized software-based face presentation attack detection in mobile scenarios. In: Proceedings of IEEE international joint conference on biometrics (IJCB), pp 688–696.  https://doi.org/10.1109/BTAS.2017.8272758
  49. 49.
    Arashloo SR, Kittler J (2017) An anomaly detection approach to face spoofing detection: a new formulation and evaluation protocol. In: Proceedings of the IEEE international joint conference on biometrics (IJCB), pp 80–89Google Scholar
  50. 50.
    Nikisins O, Mohammadi A, Anjos A, Marcel S (2018) On effectiveness of anomaly detection approaches against unseen presentation attacks in face anti-spoofing. In: Proceedings of international conference on biometrics (ICB).  https://doi.org/10.1109/ICB2018.2018.00022
  51. 51.
    Steiner H, Sporrer S, Kolb A, Jung N (2016) Design of an active multispectral SWIR camera system for skin detection and face verification. J Sens 2016(1):1 – 8. Article ID 9682453, Special Issue on Multispectral, Hyperspectral, and Polarimetric Imaging TechnologyCrossRefGoogle Scholar
  52. 52.
    Bourlai T, Narang N, Cukic B, Hornak L (2012) On designing a SWIR multi-wavelength facial-based acquisition system. In: Proceedings of SPIE: infrared technology and applications, vol 8353Google Scholar
  53. 53.
    Ramachandra R, Raja KB, Venkatesh S, Büsch C (2017) Extended multispectral face presentation attack detection: an approach based on fusing information from individual spectral bands. In: Proceedings of 20th international conference on information fusion (Fusion).  https://doi.org/10.23919/ICIF.2017.8009749
  54. 54.
    Bhattacharjee S, Marcel S (2017) What you can’t see can help you – extended range imaging for 3d-mask presentation attack detection. In: Proceedings of the 16th international conference of the biometrics special interest group (BIOSIG), Darmstadt, GermanyGoogle Scholar
  55. 55.
    Bhattacharjee S, Mohammadi A, Marcel S (2018) Spoofing deep face recognition with custom silicone masks. In: Proceedings of the IEEE international conference on biometrics: theory, applications and systems (BTAS). Los Angeles, USA )Google Scholar
  56. 56.
    Erdogmus N, Marcel S (2013) Spoofing in 2D Face recognition with 3d masks and anti-spoofing with kinect. In: Proceedings of the IEEE international conference on biometrics: theory, applications and systems (BTAS)Google Scholar
  57. 57.
    Liu S, Yang B, Yuen PC, Zhao G (2016) A 3D mask face anti-spoofing database with real world variations. In: Proceedings of IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 1551–1557.  https://doi.org/10.1109/CVPRW.2016.193
  58. 58.
    Agarwal A, Singh R, Vatsa M (2016) Face anti-spoofing using haralick features. In: Proceedings of the IEEE international conference on biometrics: theory, applications, and systems (BTAS), Niagara Falls, USA, pp 1–6Google Scholar
  59. 59.
    Manjani I, Tariyal S, Vatsa M, Singh R, Majumdar A (2017) Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Trans Inf Forensics Secur 12(7):1713–1723.  https://doi.org/10.1109/TIFS.2017.2676720CrossRefGoogle Scholar
  60. 60.
    Ramachandra R, Raja K, Büsch C (2015) Presentation attack detection for face recognition using light field camera. IEEE Trans Image Process 24(3):1–16MathSciNetCrossRefGoogle Scholar
  61. 61.
    Pinto A, Schwartz WR, Pedrini H, Rocha ADR (2015) Using visual rhythms for detecting video-based facial spoof attacks. IEEE Trans Inf Forensics Secur 10(5):1025–1038.  https://doi.org/10.1109/TIFS.2015.2395139CrossRefGoogle Scholar
  62. 62.
    Chingovska I, Erdogmus N, Anjos A, Marcel S (2016) Face recognition systems under spoofing attacks. In: Bourlai T (ed.) Face recognition across the imaging spectrum, Springer, Berlin, pp 165–194 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sushil Bhattacharjee
    • 1
    Email author
  • Amir Mohammadi
    • 1
  • André Anjos
    • 1
  • Sébastien Marcel
    • 1
  1. 1.Biometrics Security and Privacy GroupIdiap Research InstituteMartignySwitzerland

Personalised recommendations