Advertisement

Vulnerability Assessment of Cyber Security for SCADA Systems

  • Kyle Coffey
  • Leandros A. MaglarasEmail author
  • Richard Smith
  • Helge Janicke
  • Mohamed Amine Ferrag
  • Abdelouahid Derhab
  • Mithun Mukherjee
  • Stylianos Rallis
  • Awais Yousaf
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Supervisory control and data acquisition (SCADA) systems use programmable logic controllers (PLC) or other intelligent electronic devices (IED), remote terminal units (RTU) and input/output (I/O) devices to manage electromechanical equipment in either local or distributed environments. SCADA systems cover a range of industrial sectors and critical infrastructures such as water treatment and supply, electricity generation and distribution, oil refining, food production and logistics. Several factors have contributed to the escalation of risks specific to control systems, including the adoption of standardized technologies with known vulnerabilities, interconnectivity with other networks, use of insecure remote connections and widespread availability of technical information about control systems. This chapter discusses vulnerability assessment of SCADA systems, focusing on several aspects such as asset discovery, identification of vulnerabilities and threats, mitigation of attacks and presentation of major privacy issues.

References

  1. 1.
    Walters R (2014) Cyber attacks on US companies in 2014. Herit Found 4289:1–5Google Scholar
  2. 2.
    Polityuk P, Vukmanovic O, Jewkes S (2017) Ukraines power outage was a cyber attack: UkrenergoGoogle Scholar
  3. 3.
    Skorobogatov SP (2005) Semi-invasive attacks: a new approach to hardware security analysis. Ph D thesis, University of Cambridge Ph D dissertationGoogle Scholar
  4. 4.
    Skorobogatov SP, Anderson RJ et al (2002) Optical fault induction attacks. In: CHES, vol. 2523. Springer, Berlin, , pp 2–12Google Scholar
  5. 5.
    Radvanovsky R, Brodsky J (2016) Handbook of SCADA/control systems security, 2nd edn. CRC press LLC, Boca RatonCrossRefGoogle Scholar
  6. 6.
    Stouffer K, Falco J, Scarfone K (2011) Guide to industrial control systems (ics) security. NIST Spec Publ 800(82):16–16Google Scholar
  7. 7.
    Nicholson A, Webber S, Dyer S, Patel T, Janicke H (2012) Scada security in the light of cyber-warfare. Comput Secur 31(4):418–436CrossRefGoogle Scholar
  8. 8.
    Franz M (2003) Vulnerability testing of industrial network devices. In: Cisco critical infrastructure assurance group (Ciag), ISA industrial network security conference (2003)Google Scholar
  9. 9.
    Langner R (2011) Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur Priv 9(3):49–51CrossRefGoogle Scholar
  10. 10.
    Duggan D, Berg M, Dillinger J, Stamp J (2005) Penetration testing of industrial control systems. Sandia national laboratoriesGoogle Scholar
  11. 11.
    Byres E, Lowe J (2004) The myths and facts behind cyber security risks for industrial control systems. Proc VDE Kongr 116:213–218Google Scholar
  12. 12.
    Kerr PK, RollinsJ, Theohary CA (2010) The Stuxnet computer worm: harbinger of an emerging warfare capabilityGoogle Scholar
  13. 13.
    Rodofile NR, Radke K, Foo E (2016) DNP3 network scanning and reconnaissance for critical infrastructure. In: Proceedings of the Australasian computer science week multi conference. ACM, p 39Google Scholar
  14. 14.
    Knapp ED, Langill JT (2011) Industrial network security: securing critical infrastructure networks for smart grid, SCADA , and other industrial control systems syngress ???Google Scholar
  15. 15.
    Xu Y, Bailey M, Vander Weele E, Jahanian F (2010) Canvus: context-aware network vulnerability scanning. In: International workshop on recent advances in intrusion detection. Springer, Berlin , pp 138–157Google Scholar
  16. 16.
    Gonzalez J, Papa M (2007) Passive scanning in modbus networks. Crit Infrastruct Prot 175–187Google Scholar
  17. 17.
    Bartlett G, Heidemann J, Papadopoulos C (2007) Understanding passive and active service discovery. In: Proceedings of the 7th ACM SIGCOMM conference on internet measurement. ACM, pp 57–70Google Scholar
  18. 18.
    Deraison R, Gula R (2004) Blended security assessments, combining active, passive and host assessment techniques. Tenable network securityGoogle Scholar
  19. 19.
    Chen C-Y, Ghassami A, Mohan S, Kiyavash N, Bobba RB, Pellizzoni R, Yoon M-K (2017) A reconnaissance attack mechanism for fixed-priority real-time systems. arXiv:1705.02561
  20. 20.
    Bodenheim RC (2014) Impact of the shodan computer search engine on internet-facing industrial control system devices. Technical report, Air force institute of technology wright-patterson AFB OH graduate school of engineering and managementGoogle Scholar
  21. 21.
    Jaromin RM (2013) Emulation of industrial control field device protocols. Technical report, air force inst of tech wright-patterson AFB OH graduate school of engineering and managementGoogle Scholar
  22. 22.
    Peterson D (2006) Using the nessus vulnerability scanner on control systems. Digital bond white paperGoogle Scholar
  23. 23.
    Durumeric Z, Wustrow E, Halderman JA (2013) Zmap: fast internet-wide scanning and its security applications. USENIX Secur Symp 8:47–53Google Scholar
  24. 24.
    Li F, Durumeric Z, Czyz J, Karami M, Bailey M, McCoy D, Savage S, Paxson V (2016) You’ve got vulnerability: exploring effective vulnerability notifications. In: USENIX security symposium, pp 1033–1050Google Scholar
  25. 25.
    Coffey K, Smith R, Maglaras L, Janicke H (2018) Vulnerability analysis of network scanning on SCADA systems. Secur Commun NetwGoogle Scholar
  26. 26.
    Cruz T, Rosa L, Proença J, Maglaras L, Aubigny M, Lev L, Jiang J, Simões P (2016) A cybersecurity detection framework for supervisory control and data acquisition systems. IEEE Trans Ind Inf 12(6):2236–2246CrossRefGoogle Scholar
  27. 27.
    Zaddach J, Bruno L, Francillon A, Balzarotti D (2014) Avatar: A framework to support dynamic security analysis of embedded systems’ firmwares. In: NDSSGoogle Scholar
  28. 28.
    Gao W, Morris T, Reaves B, Richey D (2010) On scada control system command and response injection and intrusion detection. In: eCrime researchers summit (eCrime). IEEE, pp 1–9Google Scholar
  29. 29.
    Lin H, Slagell A, Kalbarczyk Z, Sauer P, Iyer R (2016) Runtime semantic security analysis to detect and mitigate control-related attacks in power grids. IEEE Trans Smart GridGoogle Scholar
  30. 30.
    Cook A, Janicke H, Maglaras L, Smith R (2017) An assessment of the application of it security mechanisms to industrial control systems. Int J Internet Technol Secur Trans 7(2):144–174CrossRefGoogle Scholar
  31. 31.
    Johansson E, Sommestad T, Ekstedt M (2009) Issues of cyber security in SCADA-systems - on the importance of awareness. In: Proceedings of the IEEE 20th international conference and exhibition on electricity distribution–part 1, pp 1–4Google Scholar
  32. 32.
    Singh A, Prasad A, Talwar Y (2016) SCADA security issues and FPGA implementation of AES: a review. In: Proceedings of the IEEE 2nd international conference on next generation computing technologies (NGCT), pp 899–904Google Scholar
  33. 33.
    Babu B, Ijyas T, Muneer P, Varghese J (2017) Security issues in SCADA based industrial control systems. In: Proceedings of the IEEE 2nd international conference on anti-cyber crimes (ICACC), pp 47–51Google Scholar
  34. 34.
    Expo I, Fink RK, Spencer DF, Wells RA (2006) Lessons learned from cyber security assessments of SCADA and energy management systemsGoogle Scholar
  35. 35.
    Mahboob A, Zubairi JA (2013) Securing SCADA systems with open source software. In: Proceedings of the IEEE high capacity optical networks and emerging/enabling technologies, pp 193–198Google Scholar
  36. 36.
    Sajid A, Abbas H, Saleem K (2016) Cloud-assisted IoT-based SCADA systems security: a review of the state of the art and future challenges. IEEE Access 4:1375–1384CrossRefGoogle Scholar
  37. 37.
    Davis CM, Tate JE, Okhravi H, Grier C, Overbye TJ, Nicol D (2006) SCADA cyber security testbed development. In: Proceedings of the IEEE 38th North American power symposium, pp 483–488Google Scholar
  38. 38.
    Wang Y (2011) sSCADA: securing SCADA infrastructure communications. Int J Commun Netw Distrib Syst 6(1):59–78CrossRefGoogle Scholar
  39. 39.
    Cagalaban G, Kim T, Kim S (2010) Improving SCADA control systems security with software vulnerability analysis. In: WSEAS international conference on automatic control, modelling & simulation, pp 409–414Google Scholar
  40. 40.
    Yang Y, McLaughlin K, Littler T, Sezer S, Im EG, Yao ZQ, Pranggono B, Wang HF (2012) Man-in-the-middle attack test-bed investigating cyber-security vulnerabilities in smart grid SCADA systems. In: International conference on sustainable power generation and supply (SUPERGEN 2012), pp 1–8Google Scholar
  41. 41.
    Bere M, Muyingi H (2015) Initial investigation of industrial control system (ICS) security using artificial immune system (AIS). In: Proceedings of the international conference emerging trends networks and computer communication (ETNCC), pp 79–84Google Scholar
  42. 42.
    Cherdantseva Y, Burnap P, Blyth A, Eden P, Jones K, Soulsby H, Stoddart K (2016) A review of cyber security risk assessment methods for scada systems. Comput Secur 56:1–27CrossRefGoogle Scholar
  43. 43.
    Francia III GA, Thornton D, Dawson J (2012) Security best practices and risk assessment of SCADA and industrial control systems. In: Proceedings of the international conference on security and management (SAM), p 1 (2012). The steering committee of the world congress in computer science, computer engineering and applied computing (WorldComp)Google Scholar
  44. 44.
    Chittester CG, Haimes YY (2004) Risks of terrorism to information technology and to critical interdependent infrastructures. J Homel Secur Emerg Manag 1(4)Google Scholar
  45. 45.
    Ten C-W, Manimaran G, Liu C-C (2010) Cybersecurity for critical infrastructures: attack and defense modeling. IEEE Trans Syst Man Cybern Part A Syst Hum 40(4):853–865CrossRefGoogle Scholar
  46. 46.
    Song J-G, Lee J-W, Lee C-K, Kwon K-C, Lee D-Y (2012) A cyber security risk assessment for the design of i&c systems in nuclear power plants. Nucl Eng Tech 44(8):919–928CrossRefGoogle Scholar
  47. 47.
    LeMay E, Ford MD, Keefe K, Sanders WH, Muehrcke C (2011) Model-based security metrics using adversary view security evaluation (advise). In: 2011 Eighth international conference on quantitative evaluation of systems (QEST). IEEE, pp 191–200Google Scholar
  48. 48.
    Cárdenas AA, Amin S, Lin Z-S, Huang Y-L, Huang C-Y, Sastry S (2011) Attacks against process control systems: risk assessment, detection, and response. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security. ACM, pp 355–366Google Scholar
  49. 49.
    Markovic-Petrovic J, Stojanovic M (2014) An improved risk assessment method for scada information security. Elektron ir Elektrotech 20(7):69–72CrossRefGoogle Scholar
  50. 50.
    Yan J, Govindarasu M, Liu C-C, Vaidya U (2013) A PMU-based risk assessment framework for power control systems. In: 2013 IEEE power and energy society general meeting (PES). IEEE, pp 1–5Google Scholar
  51. 51.
    Leszczyna R (2018) Cybersecurity and privacy in standards for smart grids-a comprehensive survey. Comput Stand Interfaces 56:62–73CrossRefGoogle Scholar
  52. 52.
    Nazir S, Patel S, Patel D (2017) Assessing and augmenting scada cyber security: a survey of techniques. Comput Secur 70:436–454CrossRefGoogle Scholar
  53. 53.
    Pothamsetty V, Franz M (2005) Scada honeynet project: Building honeypots for industrial networks. Cisco Systems, Inc.,[Online]. Available http://scadahoneynet.sourceforge.net/. Accessed 18 Jan 2018
  54. 54.
    Almalawi A, Yu X, Tari Z, Fahad A, Khalil I (2014) An unsupervised anomaly-based detection approach for integrity attacks on scada systems. Comput Secur 46:94–110CrossRefGoogle Scholar
  55. 55.
    Almalawi A, Fahad A, Tari Z, Alamri A, AlGhamdi R, Zomaya AY (2016) An efficient data-driven clustering technique to detect attacks in SCADA systems. IEEE Trans Inf Forensics Secur 11(5):893–906CrossRefGoogle Scholar
  56. 56.
    Yang Y, McLaughlin K, Sezer S, Littler T, Im EG, Pranggono B, Wang H (2014) Multiattribute scada-specific intrusion detection system for power networks. IEEE Trans Power Deliv 29(3):1092–1102CrossRefGoogle Scholar
  57. 57.
    Sayegh N, Elhajj IH, Kayssi A, Chehab A (2014) SCADA intrusion detection system based on temporal behavior of frequent patterns. In: 2014 17th IEEE Mediterranean electro technical conference (MELECON). IEEE, pp 432–438Google Scholar
  58. 58.
    Maglaras LA, Jiang J, Cruz T (2014) Integrated ocsvm mechanism for intrusion detection in scada systems. Electron Lett 50(25):1935–1936CrossRefGoogle Scholar
  59. 59.
    Shitharth S et al (2017) An enhanced optimization based algorithm for intrusion detection in scada network. Comput Secur 70:16–26CrossRefGoogle Scholar
  60. 60.
    Esmalifalak M, Liu L, Nguyen N, Zheng R, Han Z (2014) Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst JGoogle Scholar
  61. 61.
    Yu W, Griffith D, Ge L, Bhattarai S, Golmie N (2015) An integrated detection system against false data injection attacks in the smart grid. Secur Commun Netw 8(2):91–109CrossRefGoogle Scholar
  62. 62.
    Deng R, Xiao G, Lu R, Liang H, Vasilakos AV (2017) False data injection on state estimation in power systemsattacks, impacts, and defense: a survey. IEEE Trans Ind Inform 13(2):411–423CrossRefGoogle Scholar
  63. 63.
    Guo Z, Shi D, Johansson KH, Shi L (2017) Optimal linear cyber-attack on remote state estimation. IEEE Trans Control Netw Syst 4(1):4–13MathSciNetCrossRefGoogle Scholar
  64. 64.
    Rezai A, Keshavarzi P, Moravej Z (2016) Advance hybrid key management architecture for scada network security. Secur Commun Netw 9(17):4358–4368CrossRefGoogle Scholar
  65. 65.
    Jiang R, Lu R, Luo J, Lai C, Shen XS (2015) Efficient self-healing group key management with dynamic revocation and collusion resistance for scada in smart grid. Secur Commun Netw 8(6):1026–1039CrossRefGoogle Scholar
  66. 66.
    Rezai A, Keshavarzi P, Moravej Z (2013) Secure scada communication by using a modified key management scheme. ISA Trans 52(4):517–524CrossRefGoogle Scholar
  67. 67.
    Ebrahimi A, Koropi F, Naji H (2014) Increasing the security of SCADA systems using key management and hyper elliptic curve cryptography. In: Proceedings of the 9th symposium advanced science and technology, Mashhad, pp 17–24Google Scholar
  68. 68.
    Evans M, Maglaras LA, He Y, Janicke H (2016) Human behaviour as an aspect of cybersecurity assurance. Secur Commun Netw 9(17):4667–4679CrossRefGoogle Scholar
  69. 69.
    Greene T (2008) Experts hack power grid in no time. Network world (2008)Google Scholar
  70. 70.
    Wen M, Lu R, Zhang K, Lei J, Liang X, Shen X (2013) PaRQ: a privacy-preserving range query scheme over encrypted metering data for smart grid. IEEE Trans Emerg Top Comput 1(1): 178–191.  https://doi.org/10.1109/TETC.2013.2273889
  71. 71.
    Shi E, Bethencourt J, Chan T-HH, Song D, Perrig A (2007) Multi-dimensional range query over encrypted data. In: 2007 IEEE symposium on security and private (SP ’07). IEEE, pp 350–364.  https://doi.org/10.1109/SP.2007.29
  72. 72.
    Wen M, Lu R, Lei J, Li H, Liang X, Shen XS (2014) SESA: an efficient searchable encryption scheme for auction in emerging smart grid marketing. Secur Commun Netw 7(1): 234–244.  https://doi.org/10.1002/sec.699
  73. 73.
    Liu Q, Wang G, Wu J (2009) An efficient privacy preserving keyword search scheme in cloud computing. In: 2009 International conference on computational science and engineerings. IEEE, pp 715–720.  https://doi.org/10.1109/CSE.2009.66
  74. 74.
    Fahad A, Tari Z, Almalawi A, Goscinski A, Khalil I, Mahmood A (2014) PPFSCADA: privacy preserving framework for SCADA data publishing. Future Gener Comput Syst 37:496–511.  https://doi.org/10.1016/j.future.2014.03.002
  75. 75.
    Li H, Yang Y, Wen M, Luo H, Lu R (2014) EMRQ: An efficient multi-keyword range query scheme in smart grid auction market. KSII Trans Internet Inf Syst 8(11): 3937–3954 (2014).  https://doi.org/10.3837/tiis.2014.11.015
  76. 76.
    Jiang R, Lu R, Luo J, Lai C, Shen XS (2015) Efficient self-healing group key management with dynamic revocation and collusion resistance for SCADA in smart grid. Secur Commun Netw 8(6), 1026–1039 (2015).  https://doi.org/10.1002/sec.1057
  77. 77.
    Ferrag MA (2017) EPEC: an efficient privacy-preserving energy consumption scheme for smart grid communications. Telecommun Syst 66(4): 671–688 (2017).  https://doi.org/10.1007/s11235-017-0315-2
  78. 78.
    Rahman MS, Basu A, Kiyomoto S, Bhuiyan MZA (2017) Privacy-friendly secure bidding for smart grid demand-response. Inf Sci (Ny) 379:229–240 (2017).  https://doi.org/10.1016/j.ins.2016.10.034
  79. 79.
    Ferrag MA, Maglaras LA, Janicke H, Jiang J, Shu L (2018) A systematic review of data protection and privacy preservation schemes for smart grid communications. Sustain Cities Soc.  https://doi.org/10.1016/j.scs.2017.12.041
  80. 80.
    Ferrag MA, Maglaras L, Ahmim A (2017) Privacy-preserving schemes for Ad Hoc social networks: A Survey. IEEE Commun Surv Tutor 19(4): 3015–3045.  https://doi.org/10.1109/COMST.2017.2718178

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kyle Coffey
    • 1
  • Leandros A. Maglaras
    • 1
    Email author
  • Richard Smith
    • 1
  • Helge Janicke
    • 1
  • Mohamed Amine Ferrag
    • 2
  • Abdelouahid Derhab
    • 3
  • Mithun Mukherjee
    • 4
  • Stylianos Rallis
    • 5
  • Awais Yousaf
    • 6
  1. 1.De Montfort UniversityLeiceterU.K.
  2. 2.Department of Computer ScienceGuelma UniversityGuelmaAlgeria
  3. 3.Center of Excellence in Information Assurance, King Saud UniversityRiyadhSaudi Arabia
  4. 4.Guangdong Provincial Key Lab of Petrochemical Equipment Fault DiagnosisGuangdong University of Petrochemical TechnologyMaomingChina
  5. 5.General Secretary of Digital PolicyAthensGreece
  6. 6.University of Engineering and TechnologyLahorePakistan

Personalised recommendations