Advertisement

A Distributed Coordination Infrastructure for Attribute-Based Interaction

  • Yehia Abd Alrahman
  • Rocco De Nicola
  • Giulio Garbi
  • Michele Loreti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10854)

Abstract

Collective-adaptive systems offer an interesting notion of interaction where run-time contextual data are the driving force for interaction. The attribute-based interaction has been proposed as a foundational theoretical framework to model CAS interactions. The framework permits a group of partners to interact by considering their run-time properties and their environment. In this paper, we lay the basis for an efficient, correct, and distributed implementation of the attribute-based interaction framework. First, we present three coordination infrastructures for message exchange, then we prove their correctness, and finally we model them in terms of stochastic processes to evaluate their performance.

Keywords

Attribute-based interaction Semantics Process calculi 

References

  1. 1.
    Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39570-8_1CrossRefGoogle Scholar
  2. 2.
    Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47166-2_38CrossRefGoogle Scholar
  3. 3.
    Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming the Interactions of Collective Adaptive Systems by Relying on Attribute-based Communication. ArXiv e-prints, October 2017. http://arxiv.org/abs/1711.06092
  4. 4.
    Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for attribute-based communication. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015, pp. 1840–1845. ACM (2015).  https://doi.org/10.1145/2695664.2695668
  5. 5.
    Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)Google Scholar
  6. 6.
    Albert, E., Lanese, I. (eds.): FORTE 2016. LNCS, vol. 9688. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39570-8CrossRefGoogle Scholar
  7. 7.
    Chang, J.M., Maxemchuk, N.F.: Reliable broadcast protocols. ACM Trans. Comput. Syst. 2, 251–273 (1984).  https://doi.org/10.1145/989.357400CrossRefGoogle Scholar
  8. 8.
    Cristian, F.: Asynchronous atomic broadcast. IBM Tech. Discl. Bull. 33(9), 115–116 (1991)Google Scholar
  9. 9.
    Cristian, F., Mishra, S.: The pinwheel asynchronous atomic broadcast protocols. In: Second International Symposium on Autonomous Decentralized Systems, Proceedings, ISADS 1995, pp. 215–221. IEEE (1995).  https://doi.org/10.1109/ISADS.1995.398975
  10. 10.
    De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang at work. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 485–497. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51963-0_38CrossRefGoogle Scholar
  11. 11.
    Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput. Surv. 36, 372–421 (2004).  https://doi.org/10.1145/1041680.1041682CrossRefGoogle Scholar
  12. 12.
    Ferscha, A.: Collective adaptive systems. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2015 Adjunct, pp. 893–895. ACM, New York (2015).  https://doi.org/10.1145/2800835.2809508
  13. 13.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985).  https://doi.org/10.1145/3149.214121MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jensen, T.R., Toft, B.: Graph Coloring Problems, vol. 39. Wiley, New York (1995)MATHGoogle Scholar
  15. 15.
    Lopes, L., Silva, F., Vasconcelos, V.T.: A virtual machine for a process calculus. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 244–260. Springer, Heidelberg (1999).  https://doi.org/10.1007/10704567_15CrossRefGoogle Scholar
  16. 16.
    Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S., Maibaum, T.S.E. (eds.) CAAP 1991. LNCS, vol. 493, pp. 338–358. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-53982-4_19CrossRefGoogle Scholar
  17. 17.
    Robertson, J.B.: Continuous-time Markov chains (W. J. Anderson). SIAM Rev. 36(2), 316–317 (1994)CrossRefGoogle Scholar
  18. 18.
    Sangiorgi, D., Walker, D.: The PI-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  19. 19.
    Schulze, T.P.: Efficient kinetic Monte Carlo simulation. J. Comput. Phys. 227(4), 2455–2462 (2008). http://www.sciencedirect.com/science/article/pii/S0021999107004755MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-Work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39028-4_9CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.IMT School for Advanced Studies LuccaLuccaItaly
  2. 2.Università di CamerinoCamerinoItaly

Personalised recommendations