Local Drug Delivery to Prevent Restenosis of the Coronary and Peripheral Arteries

  • Carlo Zivelonghi
  • Pierfrancesco Agostoni
  • Freek Nijhoff


The drug-coated balloon (DCB) is an emerging device that has great potential for the percutaneous treatment of obstructive coronary and peripheral artery disease. Although the DCB technology is still in its infancy, it has already demonstrated its beneficial effects in patients with coronary in-stent restenosis (ISR) [1] and peripheral artery disease [2]. Hallmark of the DCB is the local delivery of an antirestenotic drug into the vessel wall during very short balloon-vessel contact, without the need for implantation of permanent scaffolds. The antirestenotic drug prevents restenosis after vascular intervention through inhibition of neointimal hyperplasia [3–5] and possibly by modification of the arterial remodeling response [3, 6, 7].


  1. 1.
    Scheller B, Hehrlein C, Bocksch W, et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med. 2006;355(20):2113–24.CrossRefGoogle Scholar
  2. 2.
    Tepe G, Zeller T, Albrecht T, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358(7):689–99.CrossRefGoogle Scholar
  3. 3.
    Herdeg C, Oberhoff M, Baumbach A, et al. Local paclitaxel delivery for the prevention of restenosis: biological effects and efficacy in vivo. J Am Coll Cardiol. 2000;35(7):1969–76.CrossRefGoogle Scholar
  4. 4.
    Scheller B, Speck U, Abramjuk C, Bernhardt U, Bohm M, Nickenig G. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation. 2004;110(7):810–4.CrossRefGoogle Scholar
  5. 5.
    Axel DI, Kunert W, Goggelmann C, et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation. 1997;96(2):636–45.CrossRefGoogle Scholar
  6. 6.
    Yazdani SK, Pacheco E, Nakano M, et al. Vascular, downstream, and pharmacokinetic responses to treatment with a low dose drug-coated balloon in a swine femoral artery model. Catheter Cardiovasc Interv. 2013;83(1):132–40.CrossRefGoogle Scholar
  7. 7.
    Werk M, Albrecht T, Meyer DR, et al. Paclitaxel-coated balloons reduce restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ Cardiovasc Interv. 2012;5(6):831–40.CrossRefGoogle Scholar
  8. 8.
    Buszman PP, Tellez A, Afari ME, et al. Tissue uptake, distribution, and healing response after delivery of paclitaxel via second-generation iopromide-based balloon coating. A comparison with the first-generation technology in the iliofemoral porcine model. JACC Cardiovasc Interv. 2013;6(8):883–90.CrossRefGoogle Scholar
  9. 9.
    Byrne RA, Neumann FJ, Mehilli J, et al. Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet. 2013;381(9865):461–7.CrossRefGoogle Scholar
  10. 10.
    Clever YP, Cremers B, Speck U, Dietz U, Bohm M, Scheller B. Influence of a paclitaxel coated balloon in combination with a bare metal stent on restenosis and endothelial function: comparison with a drug eluting stent and a bare metal stent. Catheter Cardiovasc Interv. 2013;84(2):323–31.CrossRefGoogle Scholar
  11. 11.
    Liistro F, Porto I, Angioli P, et al. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation. 2013;128(6):615–21.CrossRefGoogle Scholar
  12. 12.
    Liistro F, Porto I, Angioli P, et al. Elutax paclitaxel-eluting balloon followed by bare-metal stent compared with Xience V drug-eluting stent in the treatment of de novo coronary stenosis: a randomized trial. Am Heart J. 2013;166(5):920–6.CrossRefGoogle Scholar
  13. 13.
    Tada T, Kadota K, Hosogi S, et al. Association between tissue characteristics evaluated with optical coherence tomography and mid-term results after paclitaxel-coated balloon dilatation for in-stent restenosis lesions: a comparison with plain old balloon angioplasty. Eur Heart J Cardiovasc Imaging. 2013;15(3):307–15.CrossRefGoogle Scholar
  14. 14.
    Belkacemi A, Agostoni P, Nathoe HM, et al. First results of the DEB-AMI (drug eluting balloon in acute ST-segment elevation myocardial infarction) trial: a multicenter randomized comparison of drug-eluting balloon plus bare-metal stent versus bare-metal stent versus drug-eluting stent in primary percutaneous coronary intervention with 6-month angiographic, intravascular, functional, and clinical outcomes. J Am Coll Cardiol. 2012;59(25):2327–37.CrossRefGoogle Scholar
  15. 15.
    Cremers B, Milewski K, Clever YP, et al. Long-term effects on vascular healing of bare metal stents delivered via paclitaxel-coated balloons in the porcine model of restenosis. Catheter Cardiovasc Interv. 2012;80(4):603–10.CrossRefGoogle Scholar
  16. 16.
    Latib A, Colombo A, Castriota F, et al. A randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel-eluting stent in small coronary vessels: the BELLO (balloon elution and late loss optimization) study. J Am Coll Cardiol. 2012;60(24):2473–80.CrossRefGoogle Scholar
  17. 17.
    Scheller B, Clever YP, Kelsch B, et al. Long-term follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. JACC Cardiovasc Interv. 2012;5(3):323–30.CrossRefGoogle Scholar
  18. 18.
    Speck U, Cremers B, Kelsch B, et al. Do pharmacokinetics explain persistent restenosis inhibition by a single dose of paclitaxel? Circ Cardiovasc Interv. 2012;5(3):392–400.CrossRefGoogle Scholar
  19. 19.
    Stella PR, Belkacemi A, Dubois C, et al. A multicenter randomized comparison of drug-eluting balloon plus bare-metal stent versus bare-metal stent versus drug-eluting stent in bifurcation lesions treated with a single-stenting technique: six-month angiographic and 12-month clinical results of the drug-eluting balloon in bifurcations trial. Catheter Cardiovasc Interv. 2012;80(7):1138–46.CrossRefGoogle Scholar
  20. 20.
    Joner M, Byrne RA, Lapointe JM, et al. Comparative assessment of drug-eluting balloons in an advanced porcine model of coronary restenosis. Thromb Haemost. 2011;105(5):864–72.CrossRefGoogle Scholar
  21. 21.
    Kelsch B, Scheller B, Biedermann M, et al. Dose response to paclitaxel-coated balloon catheters in the porcine coronary overstretch and stent implantation model. Investig Radiol. 2011;46(4):255–63.CrossRefGoogle Scholar
  22. 22.
    Mathey DG, Wendig I, Boxberger M, Bonaventura K, Kleber FX. Treatment of bifurcation lesions with a drug-eluting balloon: the PEPCAD V (paclitaxel eluting PTCA balloon in coronary artery disease) trial. EuroIntervention. 2011;7:K61–5.CrossRefGoogle Scholar
  23. 23.
    Milewski K, Tellez A, Aboodi MS, et al. Paclitaxel-iopromide coated balloon followed by “bail-out” bare metal stent in porcine iliofemoral arteries: first report on biological effects in peripheral circulation. EuroIntervention. 2011;7(3):362–8.CrossRefGoogle Scholar
  24. 24.
    Nakamura T, Brott BC, Brants I, et al. Vasomotor function after paclitaxel-coated balloon post-dilation in porcine coronary stent model. JACC Cardiovasc Interv. 2011;4(2):247–55.CrossRefGoogle Scholar
  25. 25.
    Radke PW, Joner M, Joost A, et al. Vascular effects of paclitaxel following drug-eluting balloon angioplasty in a porcine coronary model: the importance of excipients. EuroIntervention. 2011;7(6):730–7.CrossRefGoogle Scholar
  26. 26.
    Cortese B, Micheli A, Picchi A, et al. Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO study. Heart. 2010;96(16):1291–6.CrossRefGoogle Scholar
  27. 27.
    Posa A, Nyolczas N, Hemetsberger R, et al. Optimization of drug-eluting balloon use for safety and efficacy: evaluation of the 2nd generation paclitaxel-eluting DIOR-balloon in porcine coronary arteries. Catheter Cardiovasc Interv. 2010;76(3):395–403.CrossRefGoogle Scholar
  28. 28.
    Unverdorben M, Kleber FX, Heuer H, et al. Treatment of small coronary arteries with a paclitaxel-coated balloon catheter. Clin Res Cardiol. 2010;99(3):165–74.CrossRefGoogle Scholar
  29. 29.
    Cremers B, Biedermann M, Mahnkopf D, Bohm M, Scheller B. Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model. Clin Res Cardiol. 2009;98(5):325–30.CrossRefGoogle Scholar
  30. 30.
    Cremers B, Speck U, Kaufels N, et al. Drug-eluting balloon: very short-term exposure and overlapping. Thromb Haemost. 2009;101(1):201–6.CrossRefGoogle Scholar
  31. 31.
    Werk M, Langner S, Reinkensmeier B, et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation. 2008;118(13):1358–65.CrossRefGoogle Scholar
  32. 32.
    Speck U, Scheller B, Abramjuk C, et al. Neointima inhibition: comparison of effectiveness of non-stent-based local drug delivery and a drug-eluting stent in porcine coronary arteries. Radiology. 2006;240(2):411–8.CrossRefGoogle Scholar
  33. 33.
    Kolachalama VB, Pacetti SD, Franses JW, et al. Mechanisms of tissue uptake and retention in Zotarolimus-coated balloon therapy. Circulation. 2013;127(20):2047–55.CrossRefGoogle Scholar
  34. 34.
    Cremers B, Toner JL, Schwartz LB, et al. Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter. Clin Res Cardiol. 2012;101(6):469–76.CrossRefGoogle Scholar
  35. 35.
    Granada JF, Milewski K, Zhao H, et al. Vascular response to zotarolimus-coated balloons in injured superficial femoral arteries of the familial hypercholesterolemic swine. Circ Cardiovasc Interv. 2011;4:447–55.CrossRefGoogle Scholar
  36. 36.
    Costopoulos C, Latib A, Naganuma T, et al. The role of drug-eluting balloons alone or in combination with drug-eluting stents in the treatment of de novo diffuse coronary disease. JACC Cardiovasc Interv. 2013;6(11):1153–9.CrossRefGoogle Scholar
  37. 37.
    Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation. 1964;30:654–70.CrossRefGoogle Scholar
  38. 38.
    Baughman KL, Pasternak RC, Fallon JT, Block PC. Transluminal coronary angioplasty of postmortem human hearts. Am J Cardiol. 1981;48(6):1044–7.CrossRefGoogle Scholar
  39. 39.
    Castaneda-Zuniga WR, Formanek A, Tadavarthy M, et al. The mechanism of balloon angioplasty. Radiology. 1980;135(3):565–71.CrossRefGoogle Scholar
  40. 40.
    Faxon DP, Weber VJ, Haudenschild C, Gottsman SB, McGovern WA, Ryan TJ. Acute effects of transluminal angioplasty in three experimental models of atherosclerosis. Arteriosclerosis. 1982;2(2):125–33.CrossRefGoogle Scholar
  41. 41.
    Sanborn TA, Faxon DP, Haudenschild C, Gottsman SB, Ryan TJ. The mechanism of transluminal angioplasty: evidence for formation of aneurysms in experimental atherosclerosis. Circulation. 1983;68(5):1136–40.CrossRefGoogle Scholar
  42. 42.
    Honye J, Mahon DJ, Jain A, et al. Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation. 1992;85(3):1012–25.CrossRefGoogle Scholar
  43. 43.
    Potkin BN, Keren G, Mintz GS, et al. Arterial responses to balloon coronary angioplasty: an intravascular ultrasound study. J Am Coll Cardiol. 1992;20(4):942–51.CrossRefGoogle Scholar
  44. 44.
    The SH, Gussenhoven EJ, Zhong Y, et al. Effect of balloon angioplasty on femoral artery evaluated with intravascular ultrasound imaging. Circulation. 1992;86(2):483–93.CrossRefGoogle Scholar
  45. 45.
    Braden GA, Herrington DM, Downes TR, Kutcher MA, Little WC. Qualitative and quantitative contrasts in the mechanisms of lumen enlargement by coronary balloon angioplasty and directional coronary atherectomy. J Am Coll Cardiol. 1994;23(1):40–8.CrossRefGoogle Scholar
  46. 46.
    Baptista J, di Mario C, Ozaki Y, Escaned J, Gil R, de Feyter P, Roelandt JR, Serruys PW. Impact of plaque morphology and composition on the mechanisms of lumen enlargement using intracoronary ultrasound and quantitative angiography after balloon angioplasty. Am J Cardiol. 1996;77(2):115–21.CrossRefGoogle Scholar
  47. 47.
    Mintz GS, Pichard AD, Kent KM, Satler LF, Popma JJ, Leon MB. Axial plaque redistribution as a mechanism of percutaneous transluminal coronary angioplasty. Am J Cardiol. 1996;77(5):427–30.CrossRefGoogle Scholar
  48. 48.
    Suneja R, Nair RN, Reddy KG, Rasheed Q, Sheehan HM, Hodgson JM. Mechanisms of angiographically successful directional coronary atherectomy: evaluation by intracoronary ultrasound and comparison with transluminal coronary angioplasty. Am Heart J. 1993;126(3 Pt 1):507–14.CrossRefGoogle Scholar
  49. 49.
    Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992;86(1):64–70.CrossRefGoogle Scholar
  50. 50.
    Timmis SB, Burns WJ, Hermiller JB, Parker MA, Meyers SN, Davidson CJ. Influence of coronary atherosclerotic remodeling on the mechanism of balloon angioplasty. Am Heart J. 1997;134(6):1099–106.CrossRefGoogle Scholar
  51. 51.
    Pasterkamp G, Borst C, Gussenhoven EJ, et al. Remodeling of De novo atherosclerotic lesions in femoral arteries: impact on mechanism of balloon angioplasty. J Am Coll Cardiol. 1995;26(2):422–8.CrossRefGoogle Scholar
  52. 52.
    Mehran R, Mintz GS, Popma JJ, et al. Mechanisms and results of balloon angioplasty for the treatment of in-stent restenosis. Am J Cardiol. 1996;78(6):618–22.CrossRefGoogle Scholar
  53. 53.
    Albertal M, Abizaid A, Munoz JS, et al. A novel mechanism explaining early lumen loss following balloon angioplasty for the treatment of in-stent restenosis. Am J Cardiol. 2005;95(6):751–4.CrossRefGoogle Scholar
  54. 54.
    Agostoni P, Belkacemi A, Voskuil M, Nathoe HM, Doevendans PA, Stella PR. Serial morphological and functional assessment of drug-eluting balloon for in-stent restenotic lesions mechanisms of action evaluated with angiography, optical coherence tomography, and fractional flow reserve. JACC Cardiovasc Interv. 2013;6(6):569–76.CrossRefGoogle Scholar
  55. 55.
    Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation. 1994;89(6):2816–21.CrossRefGoogle Scholar
  56. 56.
    Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation. 2005;111(17):2257–73.CrossRefGoogle Scholar
  57. 57.
    Goel SA, Guo LW, Liu B, Kent KC. Mechanisms of post-intervention arterial remodelling. Cardiovasc Res. 2012;96(3):363–71.CrossRefGoogle Scholar
  58. 58.
    Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation. 1996;94(1):35–43.CrossRefGoogle Scholar
  59. 59.
    Creel CJ, Lovich MA, Edelman ER. Arterial paclitaxel distribution and deposition. Circ Res. 2000;86:879–84.CrossRefGoogle Scholar
  60. 60.
    Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332(15):1004–14.CrossRefGoogle Scholar
  61. 61.
    Clever YP, Peters D, Calisse J, et al. Novel Sirolimus-coated balloon catheter: in vivo evaluation in a porcine coronary model. Circ Cardiovasc Interv. 2016;4:e003543. Scholar
  62. 62.
    Verheye S, Vrolix M, Kumsars I, et al. The SABRE trial (sirolimus angioplasty balloon for coronary in-stent restenosis): angiographic results and 1-year clinical outcomes. JACC Cardiovasc Interv. 2017;10(20):2029–37. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlo Zivelonghi
    • 1
  • Pierfrancesco Agostoni
    • 1
  • Freek Nijhoff
    • 1
  1. 1.Cardiovascular CenterZNA MiddelheimAntwerpBelgium

Personalised recommendations