Nanocomposites Based on Thermosetting Polyurethane Matrix and Chemically Modified Multiwalled Carbon Nanotubes

  • L. V. Karabanova
  • R. L. Whitby
  • V. A. Bershtein
  • P. N. Yakushev
  • A. W. Lloyd
  • S. V. Mikhalovsky
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


The nanocomposites based on thermosetting polyurethane (PU) matrix with 0.01–0.25 wt.% of multiwalled carbon nanotubes (MWCNTs), containing carboxyl, lactone or phenol groups on their surface, were prepared and explored. Their structural peculiarities by AFM, TEM and SEM, the thermodynamic miscibility, the dynamic (by DMA) and static mechanical properties as well as the dynamic heterogeneity and creep resistance (by creep rate spectroscopy, CRS) of the nanocomposites have been investigated. It was found that the functional groups for PU attachment that were covalently bonded to the MWCNT lattice possessed superior mechanical performance to the functional groups that were immobilised through van der Waals forces to the MWCNT surface. The thermodynamic calculations have shown that free energy of interaction between the carbon nanotubes with functionalized surfaces and PU matrix is negative for all types of nanofillers that assume the thermodynamic stability of these composites and high adhesion of PU to carbon nanotubes. The strong dependence between matrix dynamics and variations in the nanotube surface chemistry was demonstrated via the combined DMA-CRS approach. Only direct covalent bonding of the PU matrix to carbon nanotube lattice, which is free from fulvic acids, results in the dramatic changes in its glass transition dynamics even at low nanofiller content. Due to the change in fundamental interaction at the interfaces, two- or three-fold enhancement in the dynamic and static mechanical properties may be attained for low filler content thermosetting PU-MWCNT nanocomposites compared with those of neat PU matrix.


Nanocomposites Functionalized MWCNT Polyurethane matrix Thermodynamic miscibility SEM TEM AFM Segmental dynamics Mechanical properties Creep resistance 


  1. 1.
    Spitalsky Z, Tasis D, Papagelis D, Galiotis S (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401. CrossRefGoogle Scholar
  2. 2.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867. CrossRefGoogle Scholar
  3. 3.
    Pagona G, Mountrichas G, Kotas G, Karousis N, Pispas S, Tarmatarchis N (2009) Properties, applications and functionalization of carbon nanotubes. Int J Nanotechnol 6:176–185CrossRefGoogle Scholar
  4. 4.
    Wu H-C, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20:1036–1052. CrossRefGoogle Scholar
  5. 5.
    Gao C, Jin YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY et al (2005) Polyurea-functionalized multi-walled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932. CrossRefGoogle Scholar
  6. 6.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192. CrossRefGoogle Scholar
  7. 7.
    Lehah MD, Cooper SL (1986) Polyurethane in medicine and surgery. CRC Press, Boca Raton, pp 158–167Google Scholar
  8. 8.
    Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785. CrossRefGoogle Scholar
  9. 9.
    Karabanova LV, Lloyd AW, Mikhalovsky SV, Helias M, Philips GJ, Rose SF, Mikhalovska L et al (2006) Polyurethane/Poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J Mater Sci Mater Med 17:1283–1296. CrossRefGoogle Scholar
  10. 10.
    Jiang F, Hu G, Zhang L (2008) Preparation and characterization of polyurethane/multi-walled carbon nanotubes composites with multifunctional performance. Adv Mater Res 47-50:765–768CrossRefGoogle Scholar
  11. 11.
    Wang X, Du Z, Zhang C, Li C, Yang X, Li H (2008) Multi-walled carbon nanotubes encapsulated with polyurethane and its nanocomposites. J Polym Sci A Polym Chem 46:4857–4865. ADSCrossRefGoogle Scholar
  12. 12.
    Jana RN, Cho JW (2008) Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multi-walled carbon nanotubes. J Appl Polym Sci 108(5):2857–2864. CrossRefGoogle Scholar
  13. 13.
    Jana RN, Yoo HJ, Cho JW (2008) Synthesis and properties of shape memory polyurethane nanocomposites reinforced with poly(ε-caprolactone)-grafted carbon nanotubes. Fibers Polym 9:247–254CrossRefGoogle Scholar
  14. 14.
    Raja M, Shanmugharaj AM, Ryu SH (2008) Influence of surface functionalized carbon nanotubes on the properties of polyurethane nanocomposites. Soft Mater 6:65–74CrossRefGoogle Scholar
  15. 15.
    Kwon J-Y, Kim H-D (2005) Preparation and properties of acid-treated multi-walled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96:595–604. CrossRefGoogle Scholar
  16. 16.
    Fernández M, Landa M, Muñoz ME, Santamaría A (2010) Thermal and viscoelastic features of new nanocomposites based on a hot-melt adhesive polyurethane and multi-walled carbon nanotubes. Macromol Mater Eng 295:1031–1041CrossRefGoogle Scholar
  17. 17.
    Zhao W, Li M, Peng H-X (2010) Functionalized MWNT-doped thermoplastic polyurethane nanocomposites for aerospace coating applications. Macromol Mater Eng 295:838–845. CrossRefGoogle Scholar
  18. 18.
    Meng Q, Hu J, Zhu Y (2007) Shape-memory polyurethane/multi-walled carbon nanotube fibers. J Appl Polym Sci 106:837–848. CrossRefGoogle Scholar
  19. 19.
    Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416. CrossRefGoogle Scholar
  20. 20.
    Bandarian M, Shojaei A, Rashidi AM (2011) Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Int 60:475–482. CrossRefGoogle Scholar
  21. 21.
    Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheets. Polym Int 58:412–417CrossRefGoogle Scholar
  22. 22.
    McClory C, McNally T, Brennan GP, Erskine J (2007) Thermosetting polyurethane multiwalled carbon nanotube composites. J Appl Polym Sci 105:1003–1011. CrossRefGoogle Scholar
  23. 23.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652. CrossRefGoogle Scholar
  24. 24.
    Wang ZW, Shirley MD, Meikle ST, Whitby RLD, Mikhalovsky SV (2009) The surface acidity of acid oxidized multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47:73–79. CrossRefGoogle Scholar
  25. 25.
    Wang Z, Korobeinyk A, Whitby RLD, Meikle ST, Mikhalovsky SV, Acquah SFA, Kroto HW (2010) Direct confirmation that carbon nanotubes still react covalently after removal of acid-oxidative lattice fragments. Carbon 48:916–918. CrossRefGoogle Scholar
  26. 26.
    Karabanova LV, Whitby RLD, Korobeinyk A, Bondaruk O, Salvage JP, Lloyd AW, Mikhalovsky SV (2012) Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Compos Sci Technol 72:865–872. CrossRefGoogle Scholar
  27. 27.
    Karabanova LV, Whitby RLD, Bershtein VA, Korobeinyk AV, Yakushev PN, Bondaruk OM, Lloyd AW, Mikhalovsky SV (2013) The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym Sci 291(3):573–583. CrossRefGoogle Scholar
  28. 28.
    Karabanova LV, Boiteux G, Gain O et al (2004) Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym Int 53(12):2051–2058. CrossRefGoogle Scholar
  29. 29.
    Bershtein VA, Yakushev PN (2010) Laser-interferometric creep rate spectroscopy of polymers. Adv Polym Sci 230:73–219. CrossRefGoogle Scholar
  30. 30.
    Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40(2):145–149. CrossRefGoogle Scholar
  31. 31.
    Yang M, Gao Y, Li HM, Adronov A (2007) Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon 45(12):2327–2333. CrossRefGoogle Scholar
  32. 32.
    Sun YP, Fu KF, Lin Y, Huang WJ (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104 Indexed for MEDLINECrossRefGoogle Scholar
  33. 33.
    Liu LQ, Qin YJ, Guo ZX, Zhu DB (2003) Reduction of solubilised multi-walled carbon nanotubes. Carbon 41(2):331–335. CrossRefGoogle Scholar
  34. 34.
    Shilov VV, Karabanova LV, David L, Boiteux G, Seytre G, YuP G, Nesin SD, Sergeeva LM, Lutsyk ED, Svyatina AV (2005) The structure peculiarities of the polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks. Polym J Ukr 27(4):255–263Google Scholar
  35. 35.
    Bonart R, Muller EH (1974) Phase separation in urethane elastomers as judged by low-angle x-ray-scattering. 1. Fundamentals. J Macromol Sci Phys 10(B):177–189CrossRefGoogle Scholar
  36. 36.
    Ryszkowska J, Jurczyk-Kowalska M, Szymborski T, Kurzydlowski KJ (2007) Dispersion of carbon nanotubes in polyurethane matrix. Phys E Low Dimens Syst Nanostruct 39(1):124–127. ADSCrossRefGoogle Scholar
  37. 37.
    Тагер АА (1972) Термодинамическая устойчивость систем полимер – растворитель и полимер – полимер. Высокомолекулярсоед Сер А 14(12):2690–2698Google Scholar
  38. 38.
    Бессонов ЮС, Тагер АА, Юшкова СМ et al (1978) Термодинамическое исследование взаимодействия в наполненных композициях поливинилхлорида. Высокомолекулярсоед СерА 20(1):99–105Google Scholar
  39. 39.
    Kwei T (1965) Polymer-filler interaction thermodynamic calculations and a proposed model. J Polym Sci A 3(9):3229–3237. CrossRefGoogle Scholar
  40. 40.
    Karabanova LV, Boiteux G, Seytre G, Stevenson I, Gain O, Shady C, Lutsyk ED, Svyatyna A (2009) Semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxyethyl methacrylate): dielectric study of relaxation behavior. J Non-Cryst Solids 355:1453–1460. ADSCrossRefGoogle Scholar
  41. 41.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147 Google ScholarCrossRefGoogle Scholar
  42. 42.
    Sidebottom DL, Bergman R, Börjesson L, Torell LM (1993) Scaling behaviour in poly(propylene glycol) in the glass transition range. Progr Colloid Polym Sci 91:43–45CrossRefGoogle Scholar
  43. 43.
    Karabanova LV, Sergeeva LM, Svyatyna AV, Yakushev PN, Egorova LM, Ryzhov VA, Bershtein VA (2007) Heterogeneity of glass transition dynamics in polyurethane-poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks. J Polym Sci B Polym Phys 45:963–975. ADSCrossRefGoogle Scholar
  44. 44.
    Karabanova LV, Bershtein VA, Sukhanova TE, Yakushev PN, Egorova LM, Lutsyk ED, Svyatyna AV, Vylegzhanina ME (2008) 3D diamond-containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPNs: composition-nanostructure-segmental dynamics-elastic properties relationships. J Polym Sci B Polym Phys 46:1696–1712. ADSCrossRefGoogle Scholar
  45. 45.
    Chen W, Tao X, Liu Y (2006) Carbon nanotube-reinforced polyurethane composite fibers. Compos Sci Technol 66(15):3029–3034. CrossRefGoogle Scholar
  46. 46.
    Kuan H-C, Ma C-C, Chang W-P, Yuen S-M, Wu H-H, Lee T-M (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterbone polyurethane nanocomposite. Compos Sci Technol 65(11–12):1703–1710. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. V. Karabanova
    • 1
  • R. L. Whitby
    • 2
  • V. A. Bershtein
    • 3
  • P. N. Yakushev
    • 3
  • A. W. Lloyd
    • 2
  • S. V. Mikhalovsky
    • 2
  1. 1.Institute of Macromolecular Chemistry of National Academy of Sciences of UkraineKyivUkraine
  2. 2.University of BrightonBrightonUK
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations