Advertisement

Applications Perspectives of Nanodispersed Chalcogenides of Transition Metals in Photocatalysis

  • Iryna Ivanenko
  • Tetiana Dontsova
  • Yurii Fedenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)

Abstract

An overview of prospective applications of nanodispersed chalcogenides of transition metals such as MoS2 and MoSe2 in photocatalysis is presented. The mechanisms of photocatalytic reactions are analyzed. Classification of photocatalysts is reviewed. Branches of photocatalysts applications are discussed. The structure of chalcogenides of transition metals such as MoS2 and MoSe2 is considered. Photocatalytic, sorption, and electric properties of molybdenum (IV) chalcogenides are analyzed.

Notes

Acknowledgments

The authors thank the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” for the opportunity to carry out this research.

References

  1. 1.
    Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666ADSCrossRefGoogle Scholar
  2. 2.
    Fujishima A et al (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1CrossRefGoogle Scholar
  3. 3.
    Jović F et al (2011) Heterogena fotokataliza: osnove i primjena za obradu onečišćenog zraka. Kem Ind 60:387Google Scholar
  4. 4.
    Bykanova VV et al (2012) Technological aspects of the application of photocatalysts in the industry: an overview. Integr Technol En Eff 4(1):151Google Scholar
  5. 5.
    Colmenares JC (2004) Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials 2:2228ADSCrossRefGoogle Scholar
  6. 6.
    Mauroa AD et al (2017) ZnO for application in photocatalysis: from thin films to nanostructures. Mater Sci Semicond Proc 69:44CrossRefGoogle Scholar
  7. 7.
    Mills A et al (2002) A web-based overview of semiconductor photochemstry-based current commercial applications. J Photochem Photobiol 152:233CrossRefGoogle Scholar
  8. 8.
    Dontsova T et al (2012) Synthesis and characterization of titanium (IV) oxide from various precursors. Springer Proc Phys 167:275CrossRefGoogle Scholar
  9. 9.
    Mills A (2012) Photocatalytic oxidation of toluene in an NMR tube. J Photochem Photobiol A 233:34CrossRefGoogle Scholar
  10. 10.
    Cojocaru B et al (2011) Influence of gold particle size on the photocata- lytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering. Appl Catal B 107:140CrossRefGoogle Scholar
  11. 11.
    Ivanenko IN et al (2016) Low-temperature synthesis, structure-sorption characterisics and photocatalytic activity of TiO2 nanostructures. Springer: Phys Chem Water Treat Proc/J Wat Chem Technol 37(1):14Google Scholar
  12. 12.
    Ballari MM et al (2010) NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B 95:245CrossRefGoogle Scholar
  13. 13.
    Ni M et al (2006) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401CrossRefGoogle Scholar
  14. 14.
    Lu X-H et al (2011) Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Adv 1:1207CrossRefGoogle Scholar
  15. 15.
    Morales-Guio C et al (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555CrossRefGoogle Scholar
  16. 16.
    Li X et al (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485ADSCrossRefGoogle Scholar
  17. 17.
    Deng J et al (2014) High-performance hydrogen evolution electrocatalysis by layer-controlled MoS2 nanosheets. RSC Adv 4:34733CrossRefGoogle Scholar
  18. 18.
    Priscilla BP et al (2015) Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10(2):128CrossRefGoogle Scholar
  19. 19.
    Afanasiev P et al (2008) Synthetic approaches to the molybdenum sulfide materials. Compt Rend Chim 11:159CrossRefGoogle Scholar
  20. 20.
    Brenta JR et al (2017) Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog Mater Sci 89:411CrossRefGoogle Scholar
  21. 21.
    Radisavljevic B et al (2011) Single-layer MoS2 transistors. Nature Nanotech 6:147ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    Petkov V et al (2002) Structure of nanocrystalline materials using atomic pair distribution function analysis: study of LiMoS2. Phys Rev B 65:92CrossRefGoogle Scholar
  25. 25.
    Bell RE et al (1957) Preparation and characterization of a new crystalline form of molybdenum disulfide. J Am Chem S 79:3351CrossRefGoogle Scholar
  26. 26.
    Py M et al (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. C J Phys 61:76ADSCrossRefGoogle Scholar
  27. 27.
    Suzuki Y et al (1981) Phase relationship on Mo-S system at high temperatures. Mater Res B 16:1085CrossRefGoogle Scholar
  28. 28.
    Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193ADSCrossRefGoogle Scholar
  29. 29.
    Mattheiss LF et al (1973) Energy bands for 2H-NbSe2 and 2H-MoS2. Phys Rev Lett 30:784ADSCrossRefGoogle Scholar
  30. 30.
    Wypych F (2002) Dissulfeto de molibdênio, um material multifuncional e surpreendente. Quím Nova 25:1CrossRefGoogle Scholar
  31. 31.
    McMenamin JC, Spicer WE (1972) Photoemission studies of the layered dichalcogenides NbSe2 and MoS2 and a modification of the current band models. Phys Rev Let 29:1501ADSCrossRefGoogle Scholar
  32. 32.
    Spiesser M et al (1969) Caractérisation et étude physico-chimique de séléniures et tellurures non stoechiométriques de molybdène. Bull Soc Chim France 5:1427Google Scholar
  33. 33.
    Bars O et al (1973) Étude structurale de combinaisons sulfurées et séléniées du molybdène: I. Structure cristalline de Mo3Se4. Chemistry and Structure of Ternary Molybdenum Chalcogenides. J Solid State Chem 6:48ADSCrossRefGoogle Scholar
  34. 34.
    Towie LC et al (1966) Dichalcogenides MeX2. Science 154:895ADSCrossRefGoogle Scholar
  35. 35.
    Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Amsterdam 1384 рGoogle Scholar
  36. 36.
    Brewer L, Lamoreaux RH (1980) Molybdenum: physico-chemical properties of its compounds and alloys. Atom E R 7:195Google Scholar
  37. 37.
    Parilla P et al (2004) Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed vapor transport. J Phys Chem 108:6197CrossRefGoogle Scholar
  38. 38.
    Hu KH et al (2010) The effect of morphology and size on the photocatalytic properties of MoS2. Reac Kinet Mech Cat 100:153Google Scholar
  39. 39.
    Shi Y et al (2013) Ordered mesoporous crystalline mose2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Func Mater 23:1832CrossRefGoogle Scholar
  40. 40.
    Qiao XQ et al (2016) Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv 6:11631CrossRefGoogle Scholar
  41. 41.
    Yan AX et al (2014) Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chem Eur J 20:6927CrossRefGoogle Scholar
  42. 42.
    Chevrel R, Sergent M (1982) Chemistry and structure of ternary molybdenum chalcogenides. In: Fischer O, Maple MB (eds) Superconductivity in ternary compounds i, Topics in current physics Vol. 32. Springer, BerlinGoogle Scholar
  43. 43.
    Coehoorn R, Haas C (1987) Electronic structure of MoSe2, MoS2, and WSe2. Band-structure calculations and photoelectron spectroscop. Phys Rev B 35:6195ADSCrossRefGoogle Scholar
  44. 44.
    Williams AR et al (1979) Cohesive properties of metallic compounds: augmented-spherical-wave calculations. Phys Rev B 19:6094ADSCrossRefGoogle Scholar
  45. 45.
    Krivosheeva AV (2016) Prospective semiconducting compounds and nanostructures for optoelectronics, photovoltaics and spintronics. Integr technol En Effic 3(97):13Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Iryna Ivanenko
    • 1
  • Tetiana Dontsova
    • 1
  • Yurii Fedenko
    • 1
  1. 1.Department of Inorganic Substances Technology, Water Treatment and General Chemical EngineeringNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations