Cooperative Phenomena in Spin-Crossover Molecular Crystals

  • Iurii Gudyma
  • Artur Maksymov
  • Kateryna Polonska
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


In this chapter, we focus on the study of influence of surface on thermal-induced spin-crossover phenomenon which is a subject of a broad and current interest. The modified Ising-like model of spin-crossover solids with the ligand field as function of the molecule positions and random component on the surface has been proposed. By means of the adapted Metropolis Monte Carlo algorithm, the thermal spin transition curves were calculated. The detailed kinetics of switching between high-spin and low-spin molecules have been analyzed from spin configuration at transition temperature, which gives a general idea about contribution of molecules from the surface and inside the lattice into resulting magnetization of the systems. The behavior of hysteresis loop for various surface coupling and fluctuation strengths has been described.



The research of AM was partly supported by Project No. 2015/19/B/ST2/ 01028 financed by the National Science Centre (Poland).


  1. 1.
    Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds I. Springer, BerlinGoogle Scholar
  2. 2.
    Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds II. Springer, BerlinGoogle Scholar
  3. 3.
    Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds III. Springer, BerlinGoogle Scholar
  4. 4.
    Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, ChichesterGoogle Scholar
  5. 5.
    Gudyma Iu, Enachescu C, Maksymov A (2015) Kinetics of nonequilibrium transition in spin-crossover compounds. In: Fesenko O, Yatsenko L (eds) Nanocomposites, nanophotonics, nanobiotechnology, and applications. Springer, Cham, pp 375–401Google Scholar
  6. 6.
    Gudyma Iu, Maksymov A (2017) Surface-environment effects in spin crossover solids. Appl Surf Sci 407:93–98CrossRefADSGoogle Scholar
  7. 7.
    Beniwal S, Zhang X, Mu S, Naim A, Rosa P, Chastanet G, Létard J-F, Liu J, Sterbinsky GE, Arena A, Dowben PA, Enders A (2016) Surface-induced spin state locking of the [Fe(H 2 B(pz)2)2(bipy)] spin crossover complex. J Phys Condens Matter 28:206002CrossRefADSGoogle Scholar
  8. 8.
    Gaspar AB, Weber B (2016) Spin crossover phenomenon in coordination compounds. In: Sieklucka B, Pinkowicz D (eds) Molecular magnetic materials: concepts and applications. Wiley, Weinheim, pp 231–252CrossRefGoogle Scholar
  9. 9.
    Gudyma Iu, Ivashko V, Bobák A (2017) Surface and size effects in spin-crossover nanocrystals. Nanoscale Res Lett 12:101CrossRefADSGoogle Scholar
  10. 10.
    Félix G, Nicolazzi W, Salmon L, Molnár G, Perrier M, Maurin G, Larionova J, Long J, Guari Y, Bousseksou A (2013) Enhanced cooperative interactions at the nanoscale in spin-crossover materials with a first-order phase transition. Phys Rev Lett 110:235701CrossRefADSGoogle Scholar
  11. 11.
    Boldog I, Gaspar AB, Martínez V, Pardo-Ibañez P, Ksenofontov V, Bhattacharjee A, Gütlich, Real JA (2008) Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. Angew Chem Int Ed 120:6533–6537CrossRefGoogle Scholar
  12. 12.
    Linares J, Jureschi CM, Boukheddaden K (2016) Surface effects leading to unusual size dependence of the thermal hysteresis behavior in spin-crossover nanoparticles. Magnetochemistry 2:24CrossRefGoogle Scholar
  13. 13.
    Enachescu C, Tanasa R, Stancu A, Tissot A, Laisney J, Boillot M-L (2016) Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations. Appl Phys Lett 109:031908CrossRefADSGoogle Scholar
  14. 14.
    Stoleriu L, Chakraborty P, Hauser A, Stancu A, Enachescu C (2011) Thermal hysteresis in spin-crossover compounds studied within the mechanoelastic model and its potential application to nanoparticles. Phys Rev B 84:134102CrossRefADSGoogle Scholar
  15. 15.
    Tissot A, Enachescu C, Boillot M-L (2012) Control of the thermal hysteresis of the prototypal spin-transition Fe II(phen)2(NCS)2 compound via the microcrystallites environment: experiments and mechanoelastic model. J Mater Chem 22:20451CrossRefGoogle Scholar
  16. 16.
    Muraoka A, Boukheddaden K, Linares J, Varret F (2011) Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: a Monte Carlo study. Phys Rev B 84:054119CrossRefADSGoogle Scholar
  17. 17.
    Atitoaie A, Tanasa R, Enachescu C (2012) Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte Carlo based Ising-like model. J Magn Magn Mater 324:1596–1600CrossRefADSGoogle Scholar
  18. 18.
    Gudyma Iu, Maksymov A, Spinu L (2015) Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model. Appl Surf Sci 352:60–65CrossRefADSGoogle Scholar
  19. 19.
    Enachescu C, Nishino M, Miyashita S, Hauser A, Stancu A, Stoleriu L (2010) Cluster evolution in spin crossover systems observed in the frame of a mechano-elastic model. Europhys Lett 91:27003CrossRefADSGoogle Scholar
  20. 20.
    Gudyma Iu, Maksymov A, Enachescu C (2014) Phase transition in spin-crossover compounds in the breathing crystal field model. Phys Rev B 89:224412CrossRefADSGoogle Scholar
  21. 21.
    Gudyma Iu, Maksymov A, Ivashko VV (2014) Study of pressure influence on thermal transition in spin-crossover nanomaterials. Nanoscale Res Lett 9:691CrossRefADSGoogle Scholar
  22. 22.
    Gudyma Iu, Maksymov A, Miyashita S (2011) Noise effects in a finite-size Ising-like model. Phys Rev E 84:031126CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Iurii Gudyma
    • 1
  • Artur Maksymov
    • 2
  • Kateryna Polonska
    • 1
  1. 1.Department of General Physics, Technical and Computer SciencesYuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine
  2. 2.Marian Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland

Personalised recommendations