Advertisement

Bifunctional Silicas with Immobilized Lignin

  • Yulia Bolbukh
  • Stanislav Sevostianov
  • Beata Podkoscielna
  • Dariusz Sternik
  • Panagiotis Klonos
  • Polycarpos Pissis
  • Barbara Gawdzik
  • Valentin Tertykh
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)

Abstract

Silica/lignin biocomposites were obtained by impregnation of the modified pyrogenic silicas with water solutions of polymer. Modification of silica surface was carried out using liquid-phase and gas-phase treatment with alkoxyorganosilanes and hexamethyldisilazane, respectively. The silicas with methyl, amine, and silicon hydride groups in a mono- or bifunctional (methyl-hydride, methyl-amino, amino-hydride) surface layers were impregnated with kraft lignin and characterized using differential scanning calorimetry (DSC), attenuated total reflectance (ATR), Fourier transform infrared (FT-IR), and UV spectroscopies. The influence of nature and amount of silica surface functional groups on physicochemical properties of immobilized lignin has been studied. The data on the structure of the polymer layer and the nature of silica/lignin interactions are discussed.

Keywords

Modified silica Bifunctional layer Silica/lignin biocomposites Thermal properties Polymer/silica interaction 

Notes

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013 under REA grant agreement no. PIRSES-GA-2013-612484.

Competing Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Calvo-Flores FG, Dobado JA, Isac-García J, Martín-Martínez FJ (2015) Lignin and Lignans as renewable raw materials. Chemistry. Technology and applications. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J. https://doi.org/10.1155/2014/631013
  3. 3.
    Qin Y, Mo W, Yu L, Yang D, Qiu X (2016) A light-colored hydroxypropyl sulfonated alkali lignin for utilization as a dye dispersant. Holzforschung 70:109–116CrossRefGoogle Scholar
  4. 4.
    Albadarin AB, Al-Muhtaseb AH, Al-laqtah NA, Walker GM, Allen SJ, Ahmad MNM (2011) Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts. Chem Eng J 169:20–30CrossRefGoogle Scholar
  5. 5.
    Klapiszewski Ł, Bartczak P, Wysokowski M, Jankowska M, Kabat K, Jesionowski T (2015) Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem Eng J 260:684–693CrossRefGoogle Scholar
  6. 6.
    Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889CrossRefGoogle Scholar
  7. 7.
    Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6:815–825CrossRefGoogle Scholar
  8. 8.
    Klapiszewski Ł, Nowacka M, Milczarek G, Jesionowski T (2013) Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr Polym 94:345–355CrossRefGoogle Scholar
  9. 9.
    Milczarek G, Inganäs O (2012) Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335:1468–1471CrossRefADSGoogle Scholar
  10. 10.
    Podkościelnaa B, Goliszeka M, Sevastyanova O (2016) New approach in the application of lignin for the synthesis of hybrid materials. Pure Appl Chem. https://doi.org/10.1515/pac-2016-1009
  11. 11.
    Hilburg SL, Elder AN, Chung H, Ferebee RL, Bockstaller MR, Washburn NR (2014) A universal rout towards thermoplastic lignin composites with improved mechanical properties. Polymer 55:995–1003CrossRefGoogle Scholar
  12. 12.
    Podkościelna B, Sobiesiak M, Gawdzik B, Zhao Y, Sevastyanova O (2015) Lignin vinyl esters and their co-polymers with styrene, divinylbenzene and triethoxyvinylsilane. Holzforschung 69:769CrossRefGoogle Scholar
  13. 13.
    Qu Y, Tian Y, Zou B, Zhang J, Zheng Y, Wang L, Li Y, Rong C, Wang Z (2010) A novel mesoporous lignin/silica hybrid from rice husk produced by a sol–gel method. Bioresour Technol 101:8402–8405CrossRefGoogle Scholar
  14. 14.
    Saad R, Hawari J (2013) Grafting of lignin onto nanostructured silica SBA-15: preparation and characterization. J Porous Mater 20:227–233CrossRefGoogle Scholar
  15. 15.
    Klapiszewski Ł, Królak M, Jesionowski T (2014) Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites. Cent Eur J Chem 12:173–184CrossRefGoogle Scholar
  16. 16.
    Xiong W, Yang D, Zhong R, Li Y, Zhou H, Qiu X (2015) Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind Crop Prod 74:285–292CrossRefGoogle Scholar
  17. 17.
    Klapiszewski L, Madrawska M, Jesionowski T (2012) Preparation and characterisation of hydrated silica/lignin biocomposites. Physicochem Probl Miner Process 48(2):463–473Google Scholar
  18. 18.
    Jesionowski T, Klapiszewski Ł, Milczarek G (2014) Kraft lignin and silica as precursors of advanced composite materials and electroactive blends. J Mater Sci 49:1376–1385CrossRefADSGoogle Scholar
  19. 19.
    Bolbukh YN, Tertykh VA, Gawdzik B (2006) TGA and DSC studies of filled porous copolymers. J Therm Anal Calorim 86:125–132CrossRefGoogle Scholar
  20. 20.
    Strzemiecka B, Klapiszewski Ł, Jamrozik A, Szalaty TJ, Matykiewicz D, Sterzynski T, Voelkel A, Jesionowski T (2016) Physicochemical characterization of functional lignin–silica hybrid fillers for potential application in abrasive tools. Materials 9:517–530CrossRefADSGoogle Scholar
  21. 21.
    Jiang C, He H, Jiang H, Ma L, Jia DM (2013) Nano-lignin filled natural rubber composites: preparation and characterization. Express Polym Lett 7(5):480–493CrossRefGoogle Scholar
  22. 22.
    Liu Y, Hu T, Wu Z, Zeng G, Huang D, Shen Y, He X, Lai M, He Y (2014) Study on biodegradation process of lignin by FTIR and DSC. Environ Sci Pollut Res 21:14004–14013CrossRefGoogle Scholar
  23. 23.
    Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562–567CrossRefGoogle Scholar
  24. 24.
    Kifani-Sahban F, Kifani A, Belkbir L, Zoulalian A, Arauzo J, Cardero T (1997) A physical approach in the understanding of the phenomena accompanying the thermal treatment of lignin. Thermochim Acta 298:199–204CrossRefGoogle Scholar
  25. 25.
    Mousavioun P, Halley PJ, Doherty WOS (2013) Thermophysical properties and rheology of PHB/lignin blends. Ind Crop Prod 50:270–275CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yulia Bolbukh
    • 1
  • Stanislav Sevostianov
    • 1
  • Beata Podkoscielna
    • 2
  • Dariusz Sternik
    • 2
  • Panagiotis Klonos
    • 3
  • Polycarpos Pissis
    • 3
  • Barbara Gawdzik
    • 2
  • Valentin Tertykh
    • 1
  1. 1.Chuiko Institute of Surface Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Faculty of ChemistryMaria Curie-Sklodowska UniversityLublinPoland
  3. 3.Department of PhysicsNational Technical University of AthensAthensGreece

Personalised recommendations