Nanostructural and Nanochemical Processes in Peloid Sediments Aided with Biogeocenosis

  • A. V. Panko
  • I. G. Kovzun
  • O. M. Nikipelova
  • V. A. Prokopenko
  • O. A. Tsyganovich
  • V. O. Oliinyk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


Nanostructural and nanochemical processes aided with biogeocenosis in iron-oxide-hydroxide-silicate systems (IOHSS) were studied with physicochemical, colloid-chemical, and biocolloid methods using theoretical concepts of physicochemical and classic mechanics, and geomechanics. As long as general properties of such systems closely match the properties of peloid sediments (PS), the Black Sea and Azov Sea clay-contained PS, peloids and clays were selected as general research materials. Obtained experimental results have shown that nanostructural and nanochemical processes in IOHSS and sediments thereof are controlled by appropriate metabolic processes of microorganisms that are part of the studied systems and sediments. It was established that such microorganisms generally consist of iron-reducing and autotrophic bacteria that produce surface-active substances (surfactants) – amino acids and other organic compounds. Such surfactants take part in physicomechanical hydration self-dispersing processes of micro- and macroparticles in IOHSS and PS up to colloid and nanoparticles. It is shown that at the same time, due to bacterial reactions, Fe3+ of micro- and macroparticles turns into Fe2+ in the emerging nanoclusters and nanoparticles of iron-containing minerals (hydroxides and silicates). The latter are transformed chemically or microbiologically in unstable layered double hydroxides Fe2+· and Fe3+ (green rust) under the influence of CO2 and O2 of air, mainly of GR(CO32−) type. Respectively, chemical processes between O2 of air and green rust (GR) lead to their sequential transformation into nanostructures such as: Fe3O4 → γ- FeOOH (Lepidigrochitis) → α – FeOOH (Goethite). The last in the contact zones of colloidal, micro-, and macroparticles takes part in the nanochemical processes of creating coagulation–condensation structural bonds in IOHSS that influence upon their rheological and other physical–mechanical characteristics. It is shown that with increasing concentration of solid phase in IOHSS of peloids type, contact links change as follows: coagulation → interphase → solid-state → crystallization. Thus, the flow of IOHSS dispersions with increasing concentration of solid phase and the content of nanoparticles is changed in the following line: thixotropy → dilatance → reopecession → hyperanomaly of viscosity → abnormal plastic flow of solid structures. With the help of theoretical ideas of physicochemical and classical mechanics and geomechanics, an abnormal plastic flow mechanism is established. Examples are available of peloids and individual clays (bentonites and glauconites) application in spa and medical practice as antibacterial compositions and for the correction of a genetically damaged blood coagulation system in hemophilia.


  1. 1.
    Prokopenko VA, Kovzun IG, Ulberg ZR (2014) The creative potential of scientific discovery. Her Natl Acad Sci Ukr 10:52–61Google Scholar
  2. 2.
    Oleinik VA, Panko AV, Kovzun IG et al (2013) Nanochemical processes in solid-phase reduction of Ferrioxide-silicate materials. Proc NAP 2(3):03AET10Google Scholar
  3. 3.
    Kovzun IG, Ulberg ZR, Panko AV et al Colloid-chemical and Nanochemical processes in Peloids on basis of ferrous clay minerals. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, Nanooptics surface studies and applications, springer proceedings in physics, vol 167. Springer Proceedings in Physics, Heidelberg, pp 233–243Google Scholar
  4. 4.
    Panko AV, Kovzun IG, Ulberg ZR, Oleinik VA, Nikipelova EM, Babov KD (2016) Colloid-chemical modification of peloids with nano- and microparticles of natural minerals and their practical use. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, surface studies, and applications, vol 183. Springer Proceedings in Physics, Heidelberg, pp 163–177CrossRefGoogle Scholar
  5. 5.
    Oleinik VA, Panko AV, Kovzun IG et al (2016) Processes of metamorphism in iron-oxide-silicate rocks, their microbiological, nanochemical and nanostructural transformations. Proc NAP 5(3):02NABM01Google Scholar
  6. 6.
    Loboda MV, Babov KD, Zolotarjova TA, Nikipelova EM (2006) Lechebnye grjazi (peloidy) Ukrainy. Chast 1 (Therapeutical muds (peloids) of Ukraine. Part 1). Kuprijanova, KyivGoogle Scholar
  7. 7.
    Emel’janov VA (2003) Osnovy morskoj geojekologii (Basics of marine geoecology). Naukova dumka, KyivGoogle Scholar
  8. 8.
    Nikipelova OM (2014) Results of physicochemical studies of Dashukov deposit’s bentonite (Rezul’taty fizyko-khimichnykh doslidzhen bentonitu Dashukivs’koho rodovyshcha). Odesa Natl Univ Herald Chem 3:70–75Google Scholar
  9. 9.
    Nikipelova OM, Nikolenko SI, Nedoluzhenko DI (2014) Physico-chemical properties and mechanism of bactericidal action of different clays (Fizyko-khimichni vlastyvosti ta mekhanizm bakterytsydnoyi diyi hlyn riznoho pokhodzhennya). Med Rehabil Spa Ther Physiother 1:39–43Google Scholar
  10. 10.
    Frye K (ed) (1981) The encyclopedia of mineralogy, encyclopedia of earth sciences, vol IV B. Hutchinson Ross Publishing Company, StroudsbuGoogle Scholar
  11. 11.
    Shherbak NP (ed) (1990) Mineraly Ukrainy: kratkij spravochnik (Minerals of Ukraine: quick-reference book). Naukova dumka, KyivGoogle Scholar
  12. 12.
    Rozanov AJ, Zavarzin GA (1997) Bakterial’naja paleontologija (Bacterial paleontology). Vestnik RAN 67(3):241–245Google Scholar
  13. 13.
    Nikipelova OM, Solodova LB (2008) Manual on control methods of peloids and preparations on their basis. Physico-chemical research (Posibnyk z metodiv kontrolyu peloyidiv ta preparativ na yikh osnovi. Fizyko-khimichni doslidzhennya). Ukrainian Publishing Union named after Yuri Lipy, OdesaGoogle Scholar
  14. 14.
    Nikipelova OM, Hlukhovs’ka SM, Koval’ova IP (2010) Manual on control methods of medical muds (peloids), spices and preparations on their basis, microbiological research (Posibnyk z metodiv kontrolyu likuval’nykh hryazey (peloyidiv), ropy ta preparativ na yikh osnovi, Mikrobiolohichni doslidzhenya). Even, OdesaGoogle Scholar
  15. 15.
    Oleynik VA, Panko AV, Kovzun IG et al (2016) Influence of nanodispesed and microdispersed structures on metamorphism of iron oxide silicate ore materials (Vliyaniye nanodispersnykh i mikrodipersnykh struktur na protsessy metamorfizma zhelezooksidnosilikatnykh rudnykh materiaov). Nanosistemi Nanomateriali, Nanotehnologii 14(2):245–258Google Scholar
  16. 16.
    Refait P, Abdelmoula M, Genin J-MR (1998) Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros Sci 40:1547–1560CrossRefGoogle Scholar
  17. 17.
    Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses, 2th edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  18. 18.
    Jambor JL, Dutrizac JE (1998) The occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98(7):2549–2585CrossRefGoogle Scholar
  19. 19.
    Huang PM, Bollag J-M, Senesi N (2002) Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. Wiley, New YorkGoogle Scholar
  20. 20.
    Grassian VH (2005) Environmental catalysis. Taylor & Francis Group, New YorkCrossRefGoogle Scholar
  21. 21.
    Deng Y, Stumm W (1994) Reactivity of aquatic iron(III) oxyhydroxides simplications for redox cycling of iron in natural water. Appl Geochem 9:3–36CrossRefGoogle Scholar
  22. 22.
    Geosci CR, Ona-Nguema G, Stemmler S et al (2006) Bioreduction of ferric species and biogenesis of green rusts in soils. Comptes Rendus Geosci 338:447–455CrossRefADSGoogle Scholar
  23. 23.
    Ona-Nguema G, Carteret C, Benali O et al (2004) Competitive formation of hydroxycarbonate green rust I vs hydroxysulphate green rust II in Shewanella putrefaciens cultures. Geomicrobiol J 21:79–90CrossRefGoogle Scholar
  24. 24.
    Zachara JM, Kukkadapu RK, Fredrickson JK et al (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol J 19:179–207CrossRefGoogle Scholar
  25. 25.
    Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288CrossRefADSGoogle Scholar
  26. 26.
    Ona-Nguema G, Carteret C, Benali O et al (2004) Competitive formation of Hydroxycarbonate Green Rust 1 versus Hydroxysulphate Green Rust 2 in Shewanella putrefaciens Cultures. Geomicrobiol J 21(2):79–90CrossRefGoogle Scholar
  27. 27.
    Shchukin YD, Pertsov AV, Amelina YA (2006) Colloid chemistry (Kolloidnaya khimiya) “High School”, MoscowGoogle Scholar
  28. 28.
    Panko AV, Tsyganovich YA, Kozun IG, Prokopenko VA, Oleynik VA, Nikipelova EM (2016) Modeling of nanostructural processes in ore materials and peloids (Modelirovaniye nanostrukturnykh protsessov v rudnykh materialakh i peloidakh). Nanosistemi Nanomateriali Nanotehnologii 14(4):609–626Google Scholar
  29. 29.
    Kovzun IG, Pan’ko AV, Yats’kiv EV, Nikipelova OM et al (2008) Application of Nanosize Clay-Minerals’ Systems in the Complex Therapy for Haemophilia ‘A’ patients. Nanosistemi Nanomateriali Nanotehnologii 6(2):613–623Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Panko
    • 1
  • I. G. Kovzun
    • 1
  • O. M. Nikipelova
    • 3
  • V. A. Prokopenko
    • 1
    • 2
  • O. A. Tsyganovich
    • 1
  • V. O. Oliinyk
    • 1
  1. 1.F. D. Ovcharenko Institute of Biocolloid Chemistry of National Academy of Sciences of UkraineKyivUkraine
  2. 2.National Technical University of Ukraine “KPI”KyivUkraine
  3. 3.State Agency “Ukrainian Research Institute of Medical Rehabilitation and Balneology, Ministry of Health of Ukraine”OdessaUkraine

Personalised recommendations