Structure and Electrical/Dielectric Properties of Ion-Conductive Polymer Composites Based on Aliphatic Epoxy Resin and Lithium Perchlorate Salt

  • Liubov K. Matkovska
  • Maksym V. Iurzhenko
  • Yevgen P. Mamunya
  • Valeriy Demchenko
  • Gisele Boiteux
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


Nowadays, one of the most important research directions in development and creation of functional polymeric materials is a search of new solid electroactive polymers with high ionic conductivity at elevated temperatures. Particularly, the widening range of materials, which can be used for this purpose, is relevant. The present work is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG-1) that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of the synthesized polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. The presence of ether oxygen in DEG-1 macromolecules provides a transfer mechanism of the lithium cations with the ether oxygen similar to polyethylene oxide. Thus, the obtained hybrid polymers have high values of ionic conductivity σ′ (approximately 10−3 S/cm) and permittivity ε′ (6 × 105) at elevated temperatures (200°С). On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature was also found.


Ion-conductive polymers Epoxy resin Lithium perchlorate Glass transition temperature Amorphous composite Coordinative complexes 


  1. 1.
    Sudhakar YN, Selvakumar M, Krishna BD (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285CrossRefGoogle Scholar
  2. 2.
    Zygadło-Monikowska E, Florjańczyk Z, Ostrowska J, Bołtromiuk P, Frydrych J, Sadurski W, Langwald N (2011) Synthesis and characterization of new trifluoroalkoxyborates lithium salts of ionic liquid properties. Electrochim Acta 57:66–73CrossRefGoogle Scholar
  3. 3.
    Bergman M, Bergfelt A, Sun B, Bowden T, Brandell D, Johansson P (2015) Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis (trifluoromethanesulfonimide). Electrochim Acta 175:96–103CrossRefGoogle Scholar
  4. 4.
    Bo C, Qiang X, Zhen H, Yanran Z, Shaojie C, Xiaoxiong X (2016) One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 331:322–331CrossRefGoogle Scholar
  5. 5.
    Wei L, Nian L, Jie S, Po-Chun H, Yuzhang L, Hyun-Wook L, Yi C (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745ADSCrossRefGoogle Scholar
  6. 6.
    Mohamed TA, Padmanathan N, Selladurai S (2014) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:825–840Google Scholar
  7. 7.
    Guilherme LA, Borges RS, Moraes EMS, Silva GG, Pimentac MA, Marletta A, Silva RA (2007) Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes. Electrochim Acta 53:1503–1511CrossRefGoogle Scholar
  8. 8.
    Chai MN, Isa MIN (2012) Investigation on the conduction mechanism of carboxyl methylcellulose-oleic acid natural solid polymer electrolyte. Int J Adv Technol Eng Res 2:36–39Google Scholar
  9. 9.
    Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7: 2596–2615Google Scholar
  10. 10.
    Ahmad. Z, Isa MIN (2012) Ionics conduction via correlated barrier hoping mechanism in solid biopolymer electrolytes. Int J Latest Res Sci Technol 1:70–75Google Scholar
  11. 11.
    Sharma P, Kanchan DK (2013) A comparison of effect of PEG and EC plasticizers on relaxation dynamics of PEO–PMMA–AgNO3 polymer blends. Ionics 19:1285–1290CrossRefGoogle Scholar
  12. 12.
    Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696CrossRefGoogle Scholar
  13. 13.
    Kesavan K, Mathew CM, Rajendran S, Subbu C, Ulaganathan M (2015) Solid polymer blend electrolyte based on poly(ethylene oxide) and poly(vinyl pyrrolidone) for lithium secondary batteries. Brazilian J Physics 45:19–27ADSCrossRefGoogle Scholar
  14. 14.
    Das S, Ghosh A (2015) Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Adv 5.
  15. 15.
    Pradhan DK, Tripathy SN (2013) Effect of plasticizer concentration on microstructural and dielectric properties of polymer composite electrolyte. Adv Chem Sci 2:114–121Google Scholar
  16. 16.
    Dey A, Karan S, De SK (2009) Effect of nanofillers on thermal and transport properties of potassium iodide polyethylene oxide solid polymer electrolyte. Solid State Commun 149:1282–1287ADSCrossRefGoogle Scholar
  17. 17.
    Yao Z, Jingqing L, Hong H, Shichun J (2012) Effects of lithium perchlorate on poly(ethylene oxide) spherulite morphology and spherulite growth kinetics. J Appl Polym Sci 123: 1935–1943CrossRefGoogle Scholar
  18. 18.
    Machado GO, Prud’homme RE, Pawlicka A (2007) Сonductivity and thermal analysis studies of solid polymeric electrolytes based on plasticized hydroxyethyl cellulose. e-Polymers 7(1):1335–1343CrossRefGoogle Scholar
  19. 19.
    Kyung JL, Yong WK, Joo HK, Jong HK (2007) Supramolecular polymer/metal salt complexes containing quadruple hydrogen bonding units. J Polym Sci B Polym Phys 45:3181–3188CrossRefGoogle Scholar
  20. 20.
    Anji RP, Hee-Woo R (2016) The effects of LiTDI salt and POSS-PEG (n = 4) hybrid nanoparticles on crystallinity and ionic conductivity of PEO based solid polymer electrolytes. Sci Adv Mater 8(10):931–940Google Scholar
  21. 21.
    Marcinek M, Syzdek J, Marczewski M, Piszcz M, NiedzickiL KM, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W (2015) Electrolytes for Li-ion transport – review. Solid State Ionics 276:107–126CrossRefGoogle Scholar
  22. 22.
    Mindemark J, Sun B, Törmä E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 298:166–170CrossRefGoogle Scholar
  23. 23.
    Gray FM (1997) Polymer electrolytes. Published Royl Society of Chemistry, LondonGoogle Scholar
  24. 24.
    Feng Q, Yang J, Yu Y, Tian F, Zhang B, Feng M, Wang S (2017) The ionic conductivity, mechanical performance and morphology of twophase structural electrolytes based on polyethylene glycol, epoxy resin and nano-silica. Mater Sci Eng B 219:37–44CrossRefGoogle Scholar
  25. 25.
    Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322CrossRefGoogle Scholar
  26. 26.
    Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind RM, Wiemhöfer H-D, Winter M, Gores HJ (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42:39–56Google Scholar
  27. 27.
    Yu Y, Zhang B, Wang Y, Qi G, Tian F, Yang J, Wang S (2016) Co-continuous structural electrolytes based on ionic liquid, epoxy resin and organoclay: effects of organoclay content. Mater Des 104:126–133CrossRefGoogle Scholar
  28. 28.
    Wu F, Chen N, Chen R, Wang L, Li L (2017) Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy 31:9–18CrossRefGoogle Scholar
  29. 29.
    Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222CrossRefGoogle Scholar
  30. 30.
    Lv P, Yang J, Liu G, Liu H, Li S, Tang C, Mei J, Li Y, Hui D (2017) Flexible solid electrolyte based on UV cured polyurethane acrylate/succinonitrile-lithium salt composite compatibilized by tetrahydrofuran. Compos Part B 120:35–41CrossRefGoogle Scholar
  31. 31.
    Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet J-P (2017) Electrochemical performance of polymer electrolytes based on poly(vinyl alcohol)/poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries. Electrochim Acta 240:371–378CrossRefGoogle Scholar
  32. 32.
    Polu AR, Rhee H-W (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42(10):7212–7219CrossRefGoogle Scholar
  33. 33.
    Rocco AM, Fonseca CP, Loureiro FAM, Pereira RP (2004) A polymeric solid electrolyte based on a poly(ethylene oxide)/poly(bisphenol A-co-epichlorohydrin) blend with LiClO4. Solid State Ionics 166:115–126CrossRefGoogle Scholar
  34. 34.
    Łasińska AK, Marzantowicz M, Dygas JR, Krok F, Florjańczyk Z, Tomaszewska A, Zygadło-Monikowska E, Żukowska Z, Lafont U (2015) Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim Acta 169:61–72CrossRefGoogle Scholar
  35. 35.
    Kiselev YM (2008) Coordination chemistry. Integral, MoscowGoogle Scholar
  36. 36.
    Johnston K, Pavuluri SK, Leonard MT, Desmulliez MPY, Arrighi V (2015) Microwave and thermal curing of an epoxy resin for microelectronic applications. ThermochimActa 616: 100–109CrossRefGoogle Scholar
  37. 37.
    Boumedienne N, Faska Y, Maaroufi A, Pinto G, Vicente L, Benavente R (2017) Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites. J Phys Chem Solids 104:185–191ADSCrossRefGoogle Scholar
  38. 38.
    Fache M, Montérémal C, Boutevin B, Caillol S (2015) Amine hardeners and epoxy cross-linker from aromatic renewable resources. Eur Polym J 73:344–362CrossRefGoogle Scholar
  39. 39.
    Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J Phys Chem B 102:8725–8731CrossRefGoogle Scholar
  40. 40.
    Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int J Electrochem Sci 6:4737–4748Google Scholar
  41. 41.
    Daigle J-C, Asakawa Y, Vijh A, Hovington P, Armand M, Zaghib K (2016) Exceptionally stable polymer electrolyte for a lithium battery based on cross-linking by a residue-free process. J Power Sources 332:213–221CrossRefGoogle Scholar
  42. 42.
    Matkovska LK, Iurzhenko MV, Mamunya YP, Matkovska OK, Boiteux G, Lebedev EV (2017) The ion-conducting composites based on the aliphatic and aromatic epoxy oligomers and the lithium perchlorate salt. Polym J 39(3):147–153CrossRefGoogle Scholar
  43. 43.
    Matkovska L, Iurzhenko M, Mamunya Y et al (2017) Structural peculiarities of ion-conductive organic-inorganic polymer composites based on aliphatic epoxy resin and salt of lithium perchlorate. Nanoscale Res Lett 12:423 ADSCrossRefGoogle Scholar
  44. 44.
    Matkovska L, Iurzhenko M, Mamunya Y, Matkovska O, Demchenko V, Lebedev E, Boiteux G, Serghei A (2014) Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate. Nanoscale Res Lett 9:674. ADSCrossRefGoogle Scholar
  45. 45.
    Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin-HeidelbergCrossRefGoogle Scholar
  46. 46.
    Psarras GC, Manolakaki E, Tsangaris GM (2003) Dielectric dispersion and ac conductivity in iron particles loaded polymer composites. Compos Part A 34:1187–1198CrossRefGoogle Scholar
  47. 47.
    Pershina KD, Kazdobin KO (2012) The impedance spectroscopy of the electrolytic materials. Ukrainian Education, KyivGoogle Scholar
  48. 48.
    Li L, Wang F, Li J, Yang X, You J (2017) Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrog Energy 42(17):12087–12093CrossRefGoogle Scholar
  49. 49.
    Poornima Vijayan P, Puglia D, Al-Maadeed MASA, Kenny JM, Thomas S (2017) Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of ‘micro’ and ‘nano’ scale. Mater Sci Eng 116.
  50. 50.
    Shtompel VI, Kercha YY (2008) Structure of linear polyurethanes. Scientific Mind, KievGoogle Scholar
  51. 51.
    Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly (ethylene oxide) blends. Spectrochim Acta A Mol Biomol Spectrosc 76:287–292ADSCrossRefGoogle Scholar
  52. 52.
    Abarna S, Hirankumar G (2014) Study on new lithium ion conducting electrolyte based on polethylene glycol-p-tertoctyl phenyl ether and lithium perchlorate. Int J ChemTech Res 6:5161–5167Google Scholar
  53. 53.
    Bellamy L (1963) Infrared spectra of complex molecules. Foreign Lit. Pub. House, MoscowGoogle Scholar
  54. 54.
    Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc 65:1234–1240ADSCrossRefGoogle Scholar
  55. 55.
    Mamunya Y, Iurzhenko M, Lebedev E, Levchenko V, Chervakov O, Matkovska O, Sverdlikovska O (2013) Electroactive polymer materials. Alpha-Reklama, KyivGoogle Scholar
  56. 56.
    Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC (2004) Investigating the effect of miscibility on the ionic conductivity of LiClO4/PEO/PCL ternary blends. Macromolecules 37:8424–8430ADSCrossRefGoogle Scholar
  57. 57.
    Fullerton-Shirey SK, Maranas JK (2009) Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42:2142–2156ADSCrossRefGoogle Scholar
  58. 58.
    Kuo PL, Liang WJ, Chen TY (2003) Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer 44:2957–2964CrossRefGoogle Scholar
  59. 59.
    Olsher U, Izatt RM, Bradshaw JS, Dalley NK (1991) Coordination chemistry of lithium ion: a crystal and molecular structure review. Chem Rev 91:137–164CrossRefGoogle Scholar
  60. 60.
    Matkovska L, Tkachenko I, Demchenko V, Iurzhenko M, Mamunya Y (2017) Influence of lithium perchlorate on structure of epoxy polymeric composites. Nanosistemi Nanomateriali Nanotehnologii 15:175–184 UkraineGoogle Scholar
  61. 61.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, Ltd, New YorkGoogle Scholar
  62. 62.
    Chini M, Crotti P, Macchia F (1990) Metal salts as new catalysts for mild and efficient aminolysis of oxiranes. Tetrahedron Lett 31:4661–4664CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Liubov K. Matkovska
    • 1
    • 2
  • Maksym V. Iurzhenko
    • 1
  • Yevgen P. Mamunya
    • 1
  • Valeriy Demchenko
    • 1
  • Gisele Boiteux
    • 2
  1. 1.Institute of Macromolecular Chemistry of National Academy Sciences of UkraineKyivUkraine
  2. 2.Université de Lyon, Université Lyon 1, Ingénierie des Matériaux Polymères, UMR CNRS 5223VilleurbanneFrance

Personalised recommendations