Advertisement

Saprophagy, Developing on Decay

  • Graham E. Rotheray
Chapter
Part of the Zoological Monographs book series (ZM, volume 4)

Abstract

Saprophages obtain nourishment from dead organisms and associated material and are considered in this chapter. The diet of a saprophagous larva consists typically of microbes responsible or associated with decay processes, such as bacteria and yeasts, moulds and sometimes algae and protozoa. Larvae imbibe liquid suspensions of these organisms and may or may not filter them and expel the excess liquid back into the environment. Relationships between saprophagous larvae and microbes vary from straightforward exploitation to under-crowding or Allee effects and mutualisms. Their influence on the dynamics of decay processes is equally varied from having little effect to spreading, maintaining and accelerating it. Saprophagy appears to be the groundplan cyclorrhaphan larval feeding mode and a shift from predatory ancestors. Numerous small to large saprophagous cyclorrhaphan lineages exist, and switches to and from saprophagy appear to be frequent. Obligate saprophages are a diverse source of specialisations, and facultative saprophages provide insight into switching routes between feeding modes. Diverse communities of saprophagous larvae can be found at more or less continuous microhabitats and at an almost limitless range of discrete ones where competition for resources may be intense. Niche partitioning and ecological succession are also characteristic and due to such processes saprophagous larvae make significant contributions to cyclorrhaphan diversification and to terrestrial habitat biodiversity and maintenance.

References

  1. Alexander KNA (2002) The invertebrates of living and decaying timber in Britain and Ireland – a provisional annotated check list. English Nat Res Rpts, No 467Google Scholar
  2. Allen TC, Riker AJ (1932) A rot of apple fruit caused by Phytomonas melophthora n sp., following invasion by the apple maggot. Phytopathology 22:557–571Google Scholar
  3. Altincicek B, Vilcinskas A (2007) Analysis of the immune-inducible transcriptome from microbial stress resistant, rat-tailed maggots of the drone fly Eristalis tenax. BMC Genomics 8:326.  https://doi.org/10.1186/1471-2164-8-326 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anagnostou C, Dorsh M, Rohlfs M (2010) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11CrossRefGoogle Scholar
  5. Baer WS (1931) The treatment of chronic osteomyelitis with the maggot (larva of the blow fly). J Bone Joint Surg 31:438–475Google Scholar
  6. Bakula M (1970) Antibacterial compounds in the cell-free haemolymph of Drosophila melanogaster. J Insect Physiol 16:185–197PubMedCrossRefPubMedCentralGoogle Scholar
  7. Basden EB (1952) Some Drosophilidae (Diptera) of the British Isles. Entomol Mon Mag 88:200–201Google Scholar
  8. Baumberger JP (1919) A nutritional study of insects, with special reference to microorganisms and their substrata. J Exp Zool 28:1–81CrossRefGoogle Scholar
  9. Beaver RA (1972) Ecological studies on Diptera breeding in Dead Snails, 1. Biology of the species found in Cepaea nemoralis (L). Entomologist 105:41–52Google Scholar
  10. Becker R (1910) Zur kenntnis der mundteile und des kopfes der dipteren-larven. Zool Jahrb Abt Anat 29:281–314Google Scholar
  11. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, OxfordGoogle Scholar
  12. Behar A, Jurkevitch E, Yuval B (2008) Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol 17:1375–1386PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bixler GD, Bhushan B (2012) Biofouling: lessons from nature. Philos Trans R Soc A 370:2381–2417CrossRefGoogle Scholar
  14. Blanckenhorn WU, Pemberton AJ, Bussiere LF, Roembke J, Floate KD (2010) A review of the natural history and laboratory culture methods for the yellow dung fly, Scathophaga stercoraria. J Insect Sci 10:1–17CrossRefGoogle Scholar
  15. Bogdanow EA (1906) Über das züchten der larven der gewöhnlichen fleischfliege (Calliphora vomitoria) in sterilisierten nährmitteln. Archiv Ges Physiol Mensch Tiere 113:97–105CrossRefGoogle Scholar
  16. Bogdanow EA (1908) Über die abhängigkeit des wachstums der fliegenlarven von bakterien und fermenten und über variabilität und vererbung bei den fleischfliegen. Archiv Anat Physiol Abt Suppl 1908:173–200Google Scholar
  17. Boman HG, Hultmark D (1987) Cell-free immunity in insects. Ann Rev Microbiol 41:103–126CrossRefGoogle Scholar
  18. Boman AG, Nilsson-Faye I, Kerstin P, Rasmuson T (1974) Insect immunity I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect Immun 10:136–145PubMedPubMedCentralGoogle Scholar
  19. Borash DJ, Teotonio H, Rose MR, Mueller LD (2000) Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability. J Evol Biol 13:181–187CrossRefGoogle Scholar
  20. Briggs JD (1958) Humoral immunity in lepidopterous larvae. J Exp Zool 138:155–188PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on the microorganisms of hot springs. Ecology 50:192–200CrossRefGoogle Scholar
  22. Buck M (1997) Sphaeroceridae (Diptera) reared from various types of carrion and other decaying substrates in Southern Germany, including new faunistic data on some rarely collected species. Eur J Entomol 94:137–151Google Scholar
  23. Buser CC, Newcomb RD, Gaskett AC, Goddard MR (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17:1257–1264PubMedCrossRefPubMedCentralGoogle Scholar
  24. Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55:1641–1647PubMedCrossRefPubMedCentralGoogle Scholar
  25. Catts EP (1992) Problems in estimating the postmortem interval in death investigations. J Agric Entomol 9:245–255Google Scholar
  26. Chadwick JS (1975) Hemolymph changes with infection or induced immunity in insect and ticks. In: Maramorosh K, Shope RE (eds) Invertebrate immunity. Academic Press, New York, pp 241–536CrossRefGoogle Scholar
  27. Chapman RF (author), Simpson SJ, Douglas AE (eds) (2012) The insects: structure and function. Cambridge University PressGoogle Scholar
  28. Čičková H, Pastor B, Kozánek M, Martínez-Sánchez A, Rojo S, Takáč P (2012) Biodegradation of pig manure by the housefly, Musca domestica: a viable ecological strategy for pig manure management. PLoS One 7(3):e32798.  https://doi.org/10.1371/journal.pone.0032798 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coe RL (1938) Rediscovery of Callicera yerburyi Verrall (Diptera: Syrphidae); its breeding habits, with a description of the larva. Entomologiste 71:97–102Google Scholar
  30. Colyer CN (1954) More about the “coffin fly” Conicera tibialis Schmitz (Diptera: Phoridae). Entomologiste 87:130–132Google Scholar
  31. Cooper DM (1960) Food preferences of larval and adult Drosophila. Evolution 14:41–55CrossRefGoogle Scholar
  32. Creager DB, Spruijt FJ (1935) The relation of certain fungi to larval development of Eumerus tuberculatus Rond. (Syrphidae, Diptera). Ann Entomol Soc Am 28:425–437CrossRefGoogle Scholar
  33. Dimarcq J-L, Keppi E, Dunbar B, Lambert J, Reichhart J-M, Hoffmann D, Rankine SM, Fothergill JE, Hoffmann JA (1988) Insect immunity: purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phorrnia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur J Biochem 171:17–22PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dimarcq J-L, Zachary D, Hoggmann JA, Hoffmann D, Reichhart JM (1990) Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J 9:2507–2515PubMedPubMedCentralCrossRefGoogle Scholar
  35. Disney H (1994) Scuttle flies: The Phoridae. Springer, HeidelbergCrossRefGoogle Scholar
  36. Dowding VM (1967) The function and ecological significance of the pharyngeal ridges occurring in the larvae of some cyclorrhaphous Diptera. Parasitol (Cam) 57:371–388CrossRefGoogle Scholar
  37. Drew RAI, Lloyd AC (1987) Relationship of Fruit Flies (Diptera: Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am 80:629–636CrossRefGoogle Scholar
  38. Engel P, Moran NA (2013) The gut microbiota of insects – diversity in structure and function. Microbiol Rev 37:699–735Google Scholar
  39. Erdmann GR, Khalil SK (1986) Isolation and identification of two antibacterial agents produced by a strain of Proteus mirabilis isolated from larvae of the screworm (Cochliomyia hominivorax) (Diptera: Calliphoridae). J Med Entomol 23:208–211PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1999a) Association between feeding rate and parasitoid resistance in Drosophila melanogaster. Evolution 53:1302–1305PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1999b) The relative fitness of Drosophila melanogaster (Diptera, Drosophilidae) that have successfully defended themselves against the parasitoid Asobara tabida (Hymenoptera, Braconidae). J Evol Biol 12:123–128CrossRefGoogle Scholar
  42. Ferrar P (1979) The immature stages of dung-breeding muscoid flies in Australia, with notes on the species, and keys to larvae and puparia. Aust J of Zool Suppl Ser 27:1–106CrossRefGoogle Scholar
  43. Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomon 8:1–907Google Scholar
  44. Frew JGH (1928) A technique for the cultivation of insect tissues. J Exp Biol 6:1–11Google Scholar
  45. Gennard DE (2007) Forensic entomology, an introduction. Wiley, ChichesterGoogle Scholar
  46. Gilbert F (1990) Size, life history, phylogeny and feeding specialization in insect predators. In: Gilbert F (ed) Insect life cycles: genetics, evolution and coordination. Springer, Berlin, pp 101–124CrossRefGoogle Scholar
  47. Goodbrod JR, Goff ML (1990) Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. J Med Entomol 27:338–343PubMedCrossRefPubMedCentralGoogle Scholar
  48. Götz P (1986) Mechanisms of encapsulation in dipteran hosts. In: Lackie AM (ed) Immune mechanisms in invertebrate vectors. Claredon, Oxford, 19ppGoogle Scholar
  49. Gunn A, Bird J (2011) The ability of the blowflies Calliphora vomitoria (Linnaeus), Calliphora vicina (Rob-Desvoidy) and Lucilia sericata (Meigen) (Diptera: Calliphoridae) and the muscid flies Muscina stabulans (Fallen) and Muscina prolapsa (Harris) (Diptera: Muscidae) to colonise buried remains. Forensic Sci Int 207:198–204PubMedCrossRefPubMedCentralGoogle Scholar
  50. Guyenot E (1906) Sur le mode de nutrition de quelques larves de mouches. CR Soc Biol Paris 61:634–635Google Scholar
  51. Guyenot E (1907) L’appareil digestif et la digestion de quelques larves de mouches. Bull Sci Fr Belg 41:353–370Google Scholar
  52. Hagen KS (1966) Dependence of the olive-fly, Dacus oleae, larvae on symbosis with Pseudomonas savastoni for the utilisation of olive. Nature 209:423CrossRefGoogle Scholar
  53. Hartley JC (1963) The cephalopharyngeal apparatus of syrphid larvae and its relationship to other Diptera. Proc Zool Soc Lond 141:261–280CrossRefGoogle Scholar
  54. Hassell MP (1976) The dynamics of competition and predation. Studies in biology No 72, 68ppGoogle Scholar
  55. Hayes MJ, Levine TP, Wilson RH (2016) Identification of nanopillars on the cuticle of the aquatic larvae of the drone fly (Diptera: Syrphidae). J Insect Sci 16:1–7CrossRefGoogle Scholar
  56. Healey IN, Russell-Smith A (1971) Abundance and feeding preferences of fly larvae in two woodland soils. In: Proceedings of 4th international colloquium on soil zoology, pp 177–191Google Scholar
  57. Hennig W (1935) Der filterapparat im pharynx der cyclorrhaphen-larven und die biologische deutung der dipteren-larven. Zool Anz 111:131–139Google Scholar
  58. Hering EM (1943) Dipteren-biologien I. Mitt Deut Ent Gesell 12:16Google Scholar
  59. Hobson RP (1931) Studies on the nutrition of blow-fly larvae I. Structure and function of the alimentary tract. J Exp Biol 8:109–123Google Scholar
  60. Hodge S, Arthur W (1997) Direct and indirect effects of Drosophila larvae on the growth of moulds. Entomologiste 116:198–204Google Scholar
  61. Hoffman JA, Hetru C, Reichhart J-M (1993) The humoral antibacterial response of Drosophila. FEBS Lett 325:63–66CrossRefGoogle Scholar
  62. Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38PubMedCrossRefPubMedCentralGoogle Scholar
  63. Janzen D (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713CrossRefGoogle Scholar
  64. Jones MG (1979) Observations on the biology of Lonchoptera lutea Panzer (Diptera: Lonchopteridae) from cereal crops. Bull Ent Res 69:637–643CrossRefGoogle Scholar
  65. Jones CD (2005) The genetics of adaptation in Drosophila sechellia. In: Mauricio R (ed) Genetics of adaptation. Georgia Genetics Review III, vol 3. Springer, DordrechtGoogle Scholar
  66. Joshi A, Mueller LD (1988) Evolution of higher feeding rate in Drosophila due to density-dependent natural selection. Evolution 42:1090–1093PubMedCrossRefPubMedCentralGoogle Scholar
  67. Joshi A, Mueller LD (1996) Density-dependent natural selection in Drosophila: trade-offs between larval food acquisition and utilization. Evol Ecol 10:463–474CrossRefGoogle Scholar
  68. Kadavy AR, Plantz B, Shaw CA, Myatt J, Kokjohn TA, Nickerson KW (1999) Microbiology of the Oil Fly, Helaeomyia petrolei. Appl Environ Microbiol 65:1477–1482PubMedPubMedCentralGoogle Scholar
  69. Kambysellis MP, Craddock EM (1997) Ecological and reproductive shifts in the diversification of the endemic Hawaiian Drosophila. In: Givnish TI, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, New YorkGoogle Scholar
  70. Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130:233–270CrossRefGoogle Scholar
  71. Keilin D (1912) Structure du pharynx en fonction du regime chez les larves des Diptères cyclorhaphes. Comptes rendus hebdomadaires des seances de l’académie Paris 155:1548–1550Google Scholar
  72. Keilin D (1913) Sur des coinditions de nutrition de certaines larves de Diptéres parasites de fruits. Cr Seanc Soc Biol 74:24–26Google Scholar
  73. Keilin D (1915) Recherches sur les larves de Dipteres cyclorrhaphes. Bull Sci Fr Bel 49:15–198Google Scholar
  74. Keilin D, Tate P (1930) On certain semi-carnivorous Anthomyid larvae. Parasitol (Cam) 22:168–181CrossRefGoogle Scholar
  75. Keiper JP, Walton WE (2000) Biology and immature stages of Brachydeutera sturtevanti (Diptera: Ephydridae), a hyponeustic generalist. Ann Entomol Soc Am 93:468–475CrossRefGoogle Scholar
  76. Kerridge A, Lappin-Scott H, Stevens JR (2005) Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 19:333–337PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kneidel KA (1984a) The influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am Midl Nat 111:57–63CrossRefGoogle Scholar
  78. Kneidel KA (1984b) Competition and disturbance in communities of carrion-breeding Diptera. J Anim Ecol 53:849–865CrossRefGoogle Scholar
  79. Kraaijeveld AR, Godfray HCJ (1999) Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am Nat 153:561–574CrossRefGoogle Scholar
  80. Kraaijeveld AR, van Alphen JMJ (1995) Geographical variation in encapsulation ability of Drosophila melanogaster larvae and evidence for parasitoid-specific components. Evol Ecol 9:10–17CrossRefGoogle Scholar
  81. Krivosheina NP (2008) Macromycete fruit bodies as a habitat for Dipterans (Insecta, Diptera). Entomol Rev 88:778–792CrossRefGoogle Scholar
  82. Krüger F (1926) Biologie und morphologie einiger Syrphiden-larven. Z Morph Okol Tiere 6:83–149CrossRefGoogle Scholar
  83. Lambert J, Keppi E, Dimarcq J-L, Wicker C, Reichhart J-M, Dunbar B, Lepage P, Van Dorsselaer A, Hoffmann J, John Fothergill J, Hoffmann D (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci 86:262–266PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lauzon CR (2003) Symbiotic relationships of tephritids. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, New York, pp 115–129CrossRefGoogle Scholar
  85. Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lemaitre B, Hoffmann J (2007) The host defence of Drosophila melanogaster. Annu Rev Immol 25:697–743CrossRefGoogle Scholar
  87. Lussenhop J, Kumar R, Wicklow DT, Lloyd JE (1980) Insect effects on bacteria and fungi in cattle dung. Oikos 34:54–58CrossRefGoogle Scholar
  88. MacGowan I, Rotheray GE (2008) British Lonchaeidae (Diptera, Cyclorrhapha, Acalyptratae). Handbks Ident Br Insects 10:1–142Google Scholar
  89. Mackerras MJ, Freney MR (1933) Observations on the nutrition of maggots of Australian blowflies. J Exp Biol 10:237–246Google Scholar
  90. Mahmoud M, Bahgat M, Zalat S, Dewedar A (1999) Eristalinus larvae and the role of bacteria in their feeding. J Union Arab Biologists Cairo Zool 11A:417–433Google Scholar
  91. Markow TA, O’Grady PM (2008) Reproductive ecology of Drosophila. Funct Ecol 22:747–759CrossRefGoogle Scholar
  92. Martínez-Falcón AP, Marcos-García MA, Moreno CE, Rotheray GE (2011) A critical role for Copestylum larvae (Diptera, Syrphidae) in the decomposition of cactus forests. J Arid Environ 78:41–48CrossRefGoogle Scholar
  93. McLean IFG (2000) Beneficial Diptera and their role in decomposition. In: Papp L, Darvas B (eds) Contributions manual palaearctic Diptera, vol 1. Science Herald, Budapest, pp 491–517Google Scholar
  94. Meier R (1995) Cladistic analysis of the Sepsidae (Cyclorrhapha: Diptera) based on a comparative scanning electron microscopic study of larvae. Syst Entomol 20:99–128CrossRefGoogle Scholar
  95. Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M (2001) Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 38:161–166PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc B 371:20150290.  https://doi.org/10.1098/rstb.2015.0290 CrossRefGoogle Scholar
  97. Narchuk EP (1985) Adaptions of Cyclorrhaphan larvae (Diptera) for the inhabitation of living Plants. In: Skarlato OA (ed) Systematics of Diptera (Insecta): ecological and morphological principles. Oxonian Press, New Delhi, pp 97–101Google Scholar
  98. Okada M, Natori S (1983) Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J 211:727–734PubMedPubMedCentralCrossRefGoogle Scholar
  99. Okada M, Natori S (1984) Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J 222:119–124PubMedPubMedCentralCrossRefGoogle Scholar
  100. Parker GA (1972) Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae) I. A preliminary analysis of the reproductive strategy and its associated behaviour patterns. Behaviour 41:172–205CrossRefGoogle Scholar
  101. Petri L (1909) Ricerche sopra i batteri intestinali della mosca olearia. Memorie della Regia Stazione di Patologia Vegetale di Roma, RomaGoogle Scholar
  102. Pye AE, Bowman HG (1977) Insect immunity: III. Purification and partial characterization of immune protein P5 from hemolymph of Hyalophora cecropia pupae. Infect Immun 17:408–414PubMedPubMedCentralGoogle Scholar
  103. Ricarte A, Marcos-García MA, Hancock EG, Rotheray GE (2015) Neotropical Copestylum Macquart (Diptera: Syrphidae) breeding in fruits and flowers, including 7 new species. PLoS One 10:1–58.  https://doi.org/10.1371/journal.pone.0142441 CrossRefGoogle Scholar
  104. Roberts MJ (1970) The structure of the mouthparts of Syrphid larvae (Diptera) in relation to feeding habits. Acta Zool 51:43–65CrossRefGoogle Scholar
  105. Roberts MJ (1971) The structure of the mouthparts of some calypterate dipteran larvae in relation to their feeding habits. Acta Zool 52:171–188CrossRefGoogle Scholar
  106. Roháček J (2013) The fauna of Acalyptrate families Trixoscelididae, Chyromyidae and Sphaeroceridae (Diptera) in the Gemer area (Central Slovakia): supplement 2. Čas Slez Muz Opava (A) 62:155–172Google Scholar
  107. Rohdendorf BB (1974) The historical development of Diptera. University of Alberta Press, Edmonton, ABGoogle Scholar
  108. Rohlfs M (2005) Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool 2:2–7PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rotheray GE (1996) The larva of Brachyopa scutellaris Robineau-Desvoidy (Diptera: Syrphidae), with a key to and notes on the larvae of British Brachyopa species. Entomol Gaz 47:199–205Google Scholar
  110. Rotheray GE (1999) Descriptions and a key to the larval and puparial stages of north-west European Volucella (Diptera, Syrphidae). Studia Dipterol 6:103–116Google Scholar
  111. Rotheray GE (2014) Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900:50–76PubMedCrossRefGoogle Scholar
  112. Rotheray GE (2016) Improving knowledge of the cyclorrhaphan larva (Diptera). J Nat Hist 50:2169–2198CrossRefGoogle Scholar
  113. Rotheray GE, Akre K (2013) The early stages of Neoleria maritima (Villeneuve) (Diptera, Heleomyzidae) reared from a Cepeae snail. Dipt Digest 20:141–149Google Scholar
  114. Rotheray GE, Gilbert F (2011) The natural history of hoverflies. Forrest Text, CardiganGoogle Scholar
  115. Rotheray GE, Lyszkowski R (2015) Diverse mechanisms of feeding and movement in Cyclorrhaphan larvae (Diptera). J Nat Hist 49:2139–2211CrossRefGoogle Scholar
  116. Rotheray GE, Robertson D (1998) Breeding habits and early stages of seven saproxylic acalypterates (Diptera). Dipt Digest 5:96–107Google Scholar
  117. Rotheray GE, Zumbado M, Hancock EG, Thompson FC (2000) Remarkable aquatic predators in the genus Ocyptamus (Diptera, Syrphidae). Stud Dipterol 7:385–398Google Scholar
  118. Rotheray GE, Hancock EG, Marcos-Garcia M (2007) Neotropical Copestylum (Diptera, Syrphidae) breeding in bromeliads (Bromeliaceae) including 22 new species. Zool J Linnean Soc 150:267–317CrossRefGoogle Scholar
  119. Rotheray GE, Marcos-Garcia M, Hancock G, Pérez-Bañón C, Maier CT (2009) Neotropical Copestylum (Diptera, Syrphidae) breeding in Agavaceae and Cactaceae including seven new species. Zool J Linnean Soc 156:697–749CrossRefGoogle Scholar
  120. Rotheray GE, Bland KP, Hancock G (2014) Paranthomyza nitida (Diptera: Anthomyzidae): life history in Scotland. Entomol Mon Mag 150:7–18Google Scholar
  121. Rotheray GE, Horsfield D, Ayre K, Hancock EG (2015) The early stages and development sites of four species of Heleomyzidae (Diptera). Dipt Digest 22:111–122Google Scholar
  122. Rotheray EL, Goulson D, Bussiére LF (2016) Growth, development, and life-history strategies in an unpredictable environment: case study of a rare hoverfly Blera fallax (Diptera, Syrphidae). Ecol Entomol 41:85–95CrossRefGoogle Scholar
  123. Roy DN (1937) On the function of the pharyngeal ridges in the larva of Calliphora erythrocephala. Parasitol (Cam) 29:143–149CrossRefGoogle Scholar
  124. Rupp L (1989) Die mitteleuropäische Arten der Gattung Volucella (Diptera, Syrphidae) als Kommensalen und Parasitoide in den Nestern von Hummeln und sozialen Wespen: Untersuchungen zur Wirts-findung, Larvalbiologie und Mimikry. Unpublished PhD Thesis, Albert Ludwigs Universität, Freiburg, GermanyGoogle Scholar
  125. Santana FJ (1961) The biology of immature Diptera associated with bacterial decay in the giant sagaro cactus (Cereus giganteus Englemann). MS Thesis, University of ArizonaGoogle Scholar
  126. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  127. Schneider F (1950) Die Abwehrreaktion des Insektenblutes und ihre Beeinflussung durch die Parasiten. Vierteljahrsschr Naturforsch Ges Zürich 95:22–44Google Scholar
  128. Schroeder H, Klotzbach H, Elias S, Augustin C, Pueschel K (2003) Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci Int 132:76–81PubMedCrossRefPubMedCentralGoogle Scholar
  129. Semelbauer M, Kozánek M (2012) Morphology of preimaginal stages of Lauxania and Calliopum (Diptera: lauxaniidae). Zootaxa 3346:1–28CrossRefGoogle Scholar
  130. Sewell D, Burnet B, Connolly K (1975) Genetic analysis of larval feeding behavior in Drosophila melanogaster. Genet Res 24:163–173CrossRefGoogle Scholar
  131. Sherman RA, Hall MJR, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81PubMedCrossRefPubMedCentralGoogle Scholar
  132. Skidmore P (1962) Notes on the Helomyzidae of Lancashire and Cheshire, including records from other parts of north-west England. Entomologiste 95(193–198):226–236Google Scholar
  133. Skidmore P (1985) The biology of the Muscidae of the world. Junk, DordrechtGoogle Scholar
  134. Smith KGV (1956) On the Diptera associated with the stinkhorn (Phallus impudicus Pers.) with notes on other insects and invertebrates found on the fungus. Proc R Ent Soc Lond A 31:49–55Google Scholar
  135. Smith KVG (1989) An introduction to the immature stages of British flies. Handbks Ident Br Insects 10:1–280Google Scholar
  136. Sokolowski MB (1980) Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet 10:291–302PubMedCrossRefPubMedCentralGoogle Scholar
  137. Sokolowski MB (1982) Drosophila larval foraging behaviour: digging. Anim Behav 30:1252–1261CrossRefGoogle Scholar
  138. Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev 2:879–892CrossRefGoogle Scholar
  139. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature Environ Sers. No 42. Council of Europe, StrasbourgGoogle Scholar
  140. Ståhls G, Hippa H, Rotheray G, Muona J, Gilbert F (2003) Phylogeny of Syrphidae (Diptera) inferred from combined analysis of molecular and morphological characters. Syst Entomol 28:433–450CrossRefGoogle Scholar
  141. Starmer WT (1981) A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35:38–52PubMedCrossRefPubMedCentralGoogle Scholar
  142. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248PubMedCrossRefPubMedCentralGoogle Scholar
  143. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190CrossRefGoogle Scholar
  144. Sullivan RL, Sokal RR (1963) The effects of larval density on several strains of the house fly. Ecology 44:120–130CrossRefGoogle Scholar
  145. Teskey HJ (1976) Diptera larvae associated with trees in North America. Mem Entomol Soc Can 108:1–53CrossRefGoogle Scholar
  146. Teskey HJ (1981) Morphology and terminology – larvae. In: McAlpine J, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual Nearctic Diptera, vol 1, pp 65–88Google Scholar
  147. Thorpe WH (1930) The biology of the petroleum fly, Psilopa petrolii Coq. Trans R Entomol Soc Lond 78:331–343CrossRefGoogle Scholar
  148. Tinkeu LN, Hance T (1998) Functional morphology of the mandibles of the larvae of Episyrphus balteatus (De Geer, 1776) (Diptera: Syrphidae). Int J Insect Morphol Embryol 27:135–142CrossRefGoogle Scholar
  149. Tzanakakis ME, Prophetou DA, Vassiliou GN, Papadopoulos JJ (1983) Inhibition on larval growth of Dacus oleae by topical application of streptomycin to olives. Entomol Hellen 1:65–70CrossRefGoogle Scholar
  150. Varley GC (1947) The natural control of population balance in the knapweed gall-fly (Urophora jaceana). J Anim Ecol 16:139–187CrossRefGoogle Scholar
  151. Wahl E (1914) Über die Kopfbildung cyclorrhaphen Dipterenlarven und die postembryonale Entwicklung des Fliegenkopfes. Arb Zool Inst Univ Wien 20:159–272Google Scholar
  152. Wiegmann BM, Trautwein MD, Winkler IS, Barra NB, Kima J-W, Lambkin C, Berton MA, Cassela BK, Bayless KM, Heimberg AM, Wheeler BM, Petersone KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravask J, Narayanan Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GM, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci 108:5690–5695PubMedCrossRefGoogle Scholar
  153. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220CrossRefGoogle Scholar
  154. Wilkinson JJ (1901) Pharynx of Eristalis tenax. R Clay, LondonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Graham E. Rotheray
    • 1
  1. 1.National Museums of ScotlandEdinburghUK

Personalised recommendations