Advertisement

The Repetitive Landscape of the Barley Genome

  • Thomas Wicker
  • Heidrun Gundlach
  • Alan H. Schulman
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

While transposable elements (TEs) comprise the bulk of plant genomic DNA, how they contribute to genome structure and organization is still poorly understood. Especially, in large genomes where TEs make the majority of genomic DNA, it is still unclear whether TEs target specific chromosomal regions or whether they simply accumulate where they are best tolerated. The barley genome with its vast repetitive fraction is an ideal system to study chromosomal organization and evolution of TEs. Genes make only about 2% of the genome, while over 80% is derived from TEs. The TE fraction is composed of at least 350 different families. However, 50% of the genome is comprised of only 15 high-copy TE families, while all other TE families are present in moderate or low-copy numbers. The barley genome is highly compartmentalized with different types of TEs occupying different chromosomal “niches”, such as distal, interstitial or proximal regions of chromosome arms. Furthermore, gene space represents its own distinct genomic compartment that is enriched in small non-autonomous DNA transposons, suggesting that these TEs specifically target promoters and downstream regions. Some TE families also show a strong preference to insert in specific sequence motifs which may, in part, explain their distribution. The family-specific distribution patterns result in distinct TE compositions of different chromosomal compartments.

References

  1. Abe H, Gemmell NJ (2014) Abundance, arrangement, and function of sequence motifs in the chicken promoters. BMC Genom 15:900CrossRefGoogle Scholar
  2. Buchmann JP, Matsumoto T, Stein N, Keller B, Wicker T (2012) Interspecies sequence comparison of Brachypodium reveals how transposon activity corrodes genome colinearity. Plant J 488:213–217Google Scholar
  3. Buchmann JP, Löytynoja A, Wicker T, Schulman AH (2014) Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. MobDNA 5(1):24. https://doi.org/10.1186/1759-8753-5-24
  4. Bureau T, Wessler SR (1994a) Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 9:1411–1415Google Scholar
  5. Bureau T, Wessler SR (1994b) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Proc Natl Acad Sci USA 9:907–916Google Scholar
  6. Chalopin D, Naville M, Plard F, Galiana D, Volff JN (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang W, Schulman AH (2008) BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant J 56:40–50CrossRefPubMedGoogle Scholar
  8. Chang W et al (2013) BARE Retrotransposons are translated and replicated via distinct RNA pools. PLoS ONE 8:e72270CrossRefPubMedPubMedCentralGoogle Scholar
  9. d’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217CrossRefPubMedGoogle Scholar
  10. Gladyshev EA, Arkhipova IR (2011) A widespread class of reverse transcriptase-related cellular genes. Proc Natl Acad Sci USA 108:20311–20316CrossRefPubMedGoogle Scholar
  11. Han Y, Qin S, Wessler SR (2013) Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes. BMC Genom 14:71CrossRefGoogle Scholar
  12. Hirsch CD, Springer NM (2016) Transposable element influences on gene expression in plants. Biochim Biophys Acta S1874–9399:30100–30106Google Scholar
  13. Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035CrossRefPubMedPubMedCentralGoogle Scholar
  14. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  15. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800Google Scholar
  16. Jääskeläinen M et al (1999) Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant J 20:413–422CrossRefPubMedGoogle Scholar
  17. Jääskeläinen M et al (2013) Retrotransposon BARE displays strong tissue-specific differences in expression. New Phytol 200:1000–1008CrossRefPubMedGoogle Scholar
  18. Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) LARD retroelements: novel, non-autonomous components of barley and related genomes. Genetics 166:1437–1450CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529CrossRefPubMedGoogle Scholar
  20. Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P et al (2015) Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol 208:596–607CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9CrossRefPubMedGoogle Scholar
  22. Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. J Evol Biol 20:2296–2308CrossRefPubMedGoogle Scholar
  23. Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD (2013) The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genom 14:476CrossRefGoogle Scholar
  24. Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:1187–1197CrossRefPubMedGoogle Scholar
  25. Manninen I, Schulman AH (1993) BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846CrossRefPubMedGoogle Scholar
  26. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433CrossRefPubMedGoogle Scholar
  27. Middleton CP, Stein N, Keller B, Kilian B, Wicker T (2012) Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Plant J. 73:347–356CrossRefPubMedGoogle Scholar
  28. Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2:4CrossRefPubMedPubMedCentralGoogle Scholar
  29. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. https://doi.org/10.1038/nature07723
  30. Roffler S, Wicker T (2015) Genome-wide comparison of Asian and African rice reveals high recent activity of DNA transposons. Mob DNA. 6:8CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388CrossRefPubMedGoogle Scholar
  32. Sabot F, Sourdille P, Chantret N, Bernard M (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128:439–447CrossRefPubMedGoogle Scholar
  33. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. https://doi.org/10.1126/science.1178534
  34. Schulman AH (2013) Retrotransposon replication in plants. Curr Opin Virol 3:604–614CrossRefPubMedGoogle Scholar
  35. Suoniemi A et al (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306CrossRefPubMedGoogle Scholar
  36. Tanskanen JA et al (2007) Life without GAG: The BARE-2 retrotransposon as a parasite’s parasite. Gene 390:166–174CrossRefPubMedGoogle Scholar
  37. Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and Its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wicker T, Guyot R, Yahiaoui N, Keller B (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  40. Wicker T, Yu Y, Haberer G, Mayer KFX, Marri PR, Rounsley S et al (2016) DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat Commun 7:12790CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wicker T, Schulman AH, Tanskanen J, Spannagl M, Twardziok S, Mascher M, Springer NM, Li Q, Waugh R, Li C, Zhang G, Stein N, Mayer KFX, Gundlach H (2017) The repetitive landscape of the 5,100 Mbp barley genome, Mob. DNA 8:22Google Scholar
  42. Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922–19927CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Wicker
    • 1
  • Heidrun Gundlach
    • 2
  • Alan H. Schulman
    • 3
    • 4
  1. 1.Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
  2. 2.PGSB—Plant Genome and Systems Biology, Helmholtz Center MunichGerman Research Center for Environmental HealthNeuherbergGermany
  3. 3.Institute of Biotechnology and Viikki Plant Science Centre, University of HelsinkiHelsinkiFinland
  4. 4.Green Technology, Natural Resources Institute Finland (Luke)HelsinkiFinland

Personalised recommendations