Advertisement

Organellar Genomes in Barley

  • Hirokazu Handa
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Similar to other higher plants, barley (Hordeum vulgare) contains the following three cell organelles that possess their own genomes: nucleus, mitochondrion, and chloroplast. In this chapter, the genome structures, genetic content, and functions of two cytoplasmic organelles, i.e., mitochondrion and chloroplast, in barley are discussed. The barley mitochondrial genome (mt genome) is 525,599 bp in size, which is 73 kb larger than that of wheat, and the gene content is well conserved among grass species; notably, the contents of intact protein-coding genes in barley are the same as those in wheat. However, the mt genome structure is markedly different among grass species, and rearrangements and fragmentations of homologous regions prevent the reconfiguration of evolutionary processes, even in the same Triticeae lineage, which includes barley and wheat. However, the genome structure and gene content of chloroplast genome (cp genome) are highly conserved among grass species. The cp genome in barley is 136,462 bp in size, and the quadripartite structures that are common in the cp genome of higher plants are conserved. Most sequences are collinear between wheat and barley, and the gene content and gene order in barley are identical to those in wheat. Chloroplasts and mitochondria are essential organelles, and the genes encoded in both organellar genomes are indispensable for plant cell survival. Several genetic interactions among the cell organelles, nucleus, mitochondrion, and chloroplast occur within a cell. In this chapter, these genetic interactions and outcomes, including cytoplasmic male sterility (CMS) and chloroplast dysfunction, are reviewed. These phenomena are interesting and important for the understanding of the physiological function of both cytoplasmic organelles and their potential use in plant breeding. We have only recently begun to understand these genetic interactions due to the publication of the complete genomes of the nucleus, mitochondrion, and chloroplast in barley.

Keywords

Organelles Mitochondria Chloroplast Genome structure Interactions 

Notes

Acknowledgements

The author would like to thank Hiroshi Hisano (IPSR, Okayama University) for the critical reading and valuable suggestions.

References

  1. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395CrossRefPubMedGoogle Scholar
  2. Ahokas H (1979) Cytoplasmic male sterility in barley. Acta Agric Scand 29:219–224CrossRefGoogle Scholar
  3. Ahokas H (1982) Cytoplasmic male sterility in barley. Xi. The msm2 cytoplasm. Genetics 102:285–295PubMedPubMedCentralGoogle Scholar
  4. Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura T (1994) A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 25:52–58CrossRefPubMedGoogle Scholar
  5. Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34CrossRefPubMedGoogle Scholar
  7. Bonen L, Boer PH, Gray MW (1984) The wheat cytochrome oxidase subunit II gene has an intron insert and three radical amino acid changes relative to maize. EMBO J 3:2531–2536PubMedPubMedCentralCrossRefGoogle Scholar
  8. Byers E, Rueger J, Bonen L (2010) Impact of genomic environment on mitochondrial rps7 mRNA features in grasses. Mol Genet Genomics 284:207–216CrossRefPubMedGoogle Scholar
  9. Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daniell H, Lin C-S, Yu M, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dewey RE, Timothy DH, Levings CS (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84:5374–5378CrossRefPubMedGoogle Scholar
  12. Fallahi M, Crosthwait J, Calixte S, Bonen L (2005) Fate of mitochondrially located S19 ribosomal protein genes after transfer of a functional copy to the nucleus in cereals. Mol Gen Genet 273:76–83CrossRefGoogle Scholar
  13. Greiner S (2012) Plastome mutants of higher plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, advances in photosynthesis and respiration, vol 35. Springer, The Netherlands, pp 237–266Google Scholar
  14. Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A (2014) The plant mitochondrial genome: dynamics and maintenance. Biochimie 100:107–120CrossRefPubMedGoogle Scholar
  15. Hagemann R, Scholz F (1962) Ein Fall Gen-induzierter Mutationen des Plasmotyps bei Gerste. Der Züchter 32:50–59Google Scholar
  16. Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucl Acids Res 31:5907–5916Google Scholar
  17. Hanson M, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hedtke B, Wagner I, Börner T, Hess WR (1999) Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels. Plant J 19:635–643CrossRefPubMedGoogle Scholar
  19. Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994a) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hess WR, Müller A, Nagy F, Börner T (1994b) Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242:305–312CrossRefPubMedGoogle Scholar
  21. Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hisano H, Tsujimura M, Yoshida H, Terachi T, Sato K (2016) Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). BMC Genom 17:824CrossRefGoogle Scholar
  23. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194CrossRefPubMedGoogle Scholar
  24. Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12:1437–1446PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jacoby RP, Li L, Huang S, Lee CP, Millar AH, Taylor NL (2012) Mitochondrial composition, function and stress response in plants. J Integr Plant Biol 54:887–906PubMedGoogle Scholar
  26. Jain SK, Langen G, Hess W, Börner T, Hüchkelhoven R, Kogel K-H (2004) The white barley mutant albostrians shows enhanced resistance to the biotroph Blumeria graminis f. sp. hordei. Mol Plant-Microbe Interact 17:374–382CrossRefPubMedGoogle Scholar
  27. Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612CrossRefPubMedGoogle Scholar
  28. Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000Prime Rep 6:40Google Scholar
  29. Kao T-H, Moon E, Wu R (1984) Cytochrome oxidase subunit II gene of rice has an insertion sequence within the intron. Nucl Acids Res 12:7305–7315CrossRefPubMedGoogle Scholar
  30. Kazama T, Toriyama K (2016) Whole mitochondrial genome sequencing and re-examination of a cytoplasmic male sterility-associated gene in Boro-Taichung-type cytoplasmic male sterile rice. PLoS ONE 11:e0159379CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kubo N, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K (2005) Structural and distributional variation of mitochondrial rps2 genes in the tribe Triticeae (Poaceae). Theor Appl Genet 110:995–1002CrossRefPubMedGoogle Scholar
  32. Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14CrossRefPubMedGoogle Scholar
  33. Landau A, Díaz Paleo A, Civitillo R, Jaureguialzo M, Prina AR (2007) Two infA gene mutations independently originated from a mutator genotype in barley. J Hered 98:272–276CrossRefPubMedGoogle Scholar
  34. Landau A, Lencina F, Pacheco MG, Prina AR (2016) Plastome mutations and recombination events in barley chloroplast mutator seedlings. J Hered 107:266–273CrossRefPubMedPubMedCentralGoogle Scholar
  35. Landau AM, Lokstein H, Scheller HV, Lainez V, Maldonado S, Prina AR (2009) A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. Plant Physiol 151:1802–1811CrossRefPubMedPubMedCentralGoogle Scholar
  36. Landau AM, Pacheco MG, Prina AR (2011) A second infA plastid gene point mutation shows a compensatory effect on the expression of the cytoplasmic line 2 (CL2) syndrome in barley. J Hered 102:633–639CrossRefPubMedGoogle Scholar
  37. Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628CrossRefPubMedGoogle Scholar
  38. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russellet J et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433CrossRefPubMedGoogle Scholar
  39. Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9:e85761CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nishikawa T, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K (2002) Molecular phylogeny of the genus Hordeum using three chloroplast DNA sequences. Genome 45:1157–1166CrossRefPubMedGoogle Scholar
  41. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445CrossRefPubMedGoogle Scholar
  42. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics 266:740–746CrossRefPubMedGoogle Scholar
  43. Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33:6235–6250CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ong HC, Palmer JD (2006) Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus. BMC Evol Biol 6:55CrossRefPubMedPubMedCentralGoogle Scholar
  45. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97CrossRefPubMedGoogle Scholar
  46. Prina AR (1992) A mutator nuclear gene inducing a wide spectrum of cytoplasmically inherited chlorophyll deficiences in barley. Theor Appl Genet 85:245–251PubMedGoogle Scholar
  47. Prina AR, Landau A, Colombo N, Jaureguialzo M, Arias MC, Rios RD, Pacheco MG (2009) Genetically unstable mutants as novel sources of genetic variability: the chloroplast mutator genotype in barley as a tool for exploring the plastid genome. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 255–256Google Scholar
  48. Rios RD, Saione H, Roberdo C, Acevedo A, Colombo N, Prina AR (2003) Isolation and molecular characterization of atrazine tolerant barley mutants. Theor Appl Genet 106:696–702CrossRefPubMedGoogle Scholar
  49. Rish SY, Breiman A (1993) RNA editing of the barley (Hordeum vulgare) mitochondrial ATP synthase subunit 9. Plant Mol Biol 22:711–714CrossRefPubMedGoogle Scholar
  50. Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgareSorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590CrossRefPubMedPubMedCentralGoogle Scholar
  51. Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion 8:35–46CrossRefPubMedGoogle Scholar
  52. Ui H, Sameri M, Pourkheirandish M, Chang M-C, Shimada H, Stein N, Komatsuda T, Handa H (2015) High-resolution genetic mapping and physical map construction for the fertility restorer Rfm1 locus in barley. Theor Appl Genet 128:283–290CrossRefPubMedGoogle Scholar
  53. Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–860PubMedPubMedCentralGoogle Scholar
  54. Zhelyazkova P, Sharma CM, Förstner KU, Liere K, Vogel J, Börner T (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plant Genome Research UnitInstitute of Crop Science, National Agriculture and Food Research Organization (NARO)TsukubaJapan

Personalised recommendations