Advertisement

Taxonomy of the Genus Hordeum and Barley (Hordeum vulgare)

  • Frank R. Blattner
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Barley refers to the cereal Hordeum vulgare subsp. vulgare but also more generally to the barley genus Hordeum that, apart from cultivated barley, comprises more than 30 wild grass species distributed in temperate and arid regions of the world. Like wheat and rye, Hordeum belongs to the Triticeae tribe of grasses, most conspicuously characterized by their inflorescence that is a spike instead of the panicle that occurs in most other grasses. The wild progenitor of the cereal is H. vulgare subsp. spontaneum from Southwest Asia. Together with bulbous barley (Hordeum bulbosum), the closest relative of the crop, and wall barley (Hordeum murinum) these species are grouped within subgenus Hordeum, while all other species belong to subgenus Hordeastrum. The crop is easily crossable with its wild progenitor (forming the primary gene pool of barley), while hybrids between cultivated and bulbous barley (secondary gene pool) exhibit low fertility. All other species belong to the tertiary gene pool, resulting in sterile hybrids that can only be established through embryo rescue techniques. However, barley’s tertiary gene pool holds traits for pathogen resistances and adaptations to extreme environmental conditions, which are of high value if they can be transferred into cultivated barley or other cereals. Taxonomic and nomenclatural issues are discussed here in the light of recent findings in molecular systematics and gene function.

References

  1. Azhaguvel P, Komtasuda T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barkworth ME, von Bothmer R (2009) Scientific names in the Triticeae. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of Triticeae. Springer, New York, pp 3–30CrossRefGoogle Scholar
  3. Bentham G (1882) Notes on Gramineae. J Linn Soc London, Bot 19:14–134CrossRefGoogle Scholar
  4. Bernhard N (2015) Taxonomic treatment of Triticeae and the wheat genus Triticum. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat: cytogenetics, molecular biology, and genomics. Springer Int Publ, Switzerland, pp 1–19Google Scholar
  5. Bernhardt N, Brassac J, Kilian B, Blattner FR (2017) Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol Biol 17:141CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blattner FR (2004) Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 33:289–299CrossRefPubMedGoogle Scholar
  7. Blattner FR (2006) Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). New Phytol 169:603–614CrossRefPubMedGoogle Scholar
  8. Blattner FR (2009) Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breed Sci 59:471–480CrossRefGoogle Scholar
  9. Brassac J, Blattner FR (2015) Species level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst Biol 64:792–808CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brassac J, Jakob SS, Blattner FR (2012) Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS ONE 7:e33808CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brickell CD, Alexander C, David JC et al (2009) International code of nomenclature for cultivated plants, 8th ed. Scripta Hort 10Google Scholar
  12. Brummitt RK (2006) Am I a bony fish? Taxon 55:268–269CrossRefGoogle Scholar
  13. Dai F, Nevo E, Wu D et al (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973CrossRefPubMedGoogle Scholar
  14. Dai F, Chen ZH, Wand Y et al (2014) Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc Natl Acad Sci USA 111:13403–13408CrossRefPubMedGoogle Scholar
  15. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Publishing Corporation, New York, pp 209–279CrossRefGoogle Scholar
  16. Escobar JS, Scornavacca C, Cenci A et al (2011) Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 11:181CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hammer K (1984) Das Domestikationssyndrom. Kulturpflanze 32:11–34CrossRefGoogle Scholar
  18. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  19. Hitchcock AS (1951). In: A. Chase (ed) Manual of the grasses of the United States, 2nd edn. U.S. Department of Agriculture Miscellaneous Publication No. 200. U.S. Government Printing Office, Washington, D.C.Google Scholar
  20. Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869CrossRefPubMedGoogle Scholar
  21. Jakob SS, Rödder D, Engler JO, Shaaf S, Özkan H, Blattner FR, Kilian B (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6:685–702CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kellogg EA (2015) Flowering plants—monocots—Poaceae. In: The families and genera of vascular plants, vol 13. Springer, HeidelbergGoogle Scholar
  23. Kellogg EA (2016) Has the connection between polyploidy and diversification actually been tested? Curr Opin Plant Biol 30:25–32CrossRefPubMedGoogle Scholar
  24. Kihara H (1930) Genomanalyse bei Triticum und Aegilops. Cytologia (Tokyo) 1:263–284CrossRefGoogle Scholar
  25. Komatsuda T, Tanno K, Salomon B, Bryngelsson T, von Bothmer R (1999) Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrs1 locus (row number of spikelets). Genome 42:973–981CrossRefPubMedGoogle Scholar
  26. Komatsuda T, Pourkheirandish M, He CF et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429CrossRefPubMedGoogle Scholar
  27. Kuhle M (2005) Glacial geomorphology and ice ages in Tibet and the surrounding mountains. Island Arc 14:346–367CrossRefGoogle Scholar
  28. Linnaeus C (1753) Species plantarum. Impensis Laurentii Salvii, StockholmGoogle Scholar
  29. Löve A (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521Google Scholar
  30. Mansfeld R (1950) Das morphologische System der Saatgerste, Hordeum vulgare L. s.l. Züchter 20:8–24Google Scholar
  31. Mascher M, Schuenemann VJ, Davidovich U et al (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genet 48:1089–1093CrossRefPubMedGoogle Scholar
  32. McNeill J, Barrie FR, Buck WR et al (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Veg 154Google Scholar
  33. Nevski SA (1934) Agrostological studies IV. The systematics of the tribe Hordeeae. Trudy Bot Inst Akad Nauk SSSR. Flora Sist Vysshikh Rastenii 1:9–32Google Scholar
  34. Nevski SA (1941) Beiträge zur Kenntnis der wildwachsenden Gersten in Zusammenhang mit der Frage über den Ursprung von Hordeum vulgare L. und Hordeum distichon L. (Versuch einer Monographie der Gattung Hordeum). Trudy Bot Inst Akad Nauk SSSR, ser 1, 5:64–255Google Scholar
  35. Petersen G, Seberg O (2003) Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Syst Bot 28:293–306Google Scholar
  36. Petersen G, Aagesen L, Seberg O, Larsen IH (2011) When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). Cladistics 27:1–19CrossRefGoogle Scholar
  37. Pourkheirandish M, Hensel G, Kilian B et al (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539CrossRefPubMedGoogle Scholar
  38. Russell J, Dawson IK, Flavell AJ et al (2011) Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 191:564–578CrossRefPubMedGoogle Scholar
  39. Sakuma S, Salomon B, Komatsuda T (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52:738–749CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stebbins GL (1956) Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution 10:235–245CrossRefGoogle Scholar
  41. Tzvelev NN (1976) Zlaki SSSR—grasses of the Soviet Union. Leningrad. [Engl. Ed. 1983 Transl Sharma BR]Google Scholar
  42. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University PapersGoogle Scholar
  43. von Bothmer R, Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmuss DC (ed) Barley. Agronomy Monographs No. 26. Madison, American Society Agronomy, pp 19–56Google Scholar
  44. von Bothmer R, Chi Y, Yang J (1990) Does wild, six-rowed barley, Hordeum agriocrithon, really exist? Plant Genet Res Newsl 77:17–19Google Scholar
  45. von Bothmer R, Jacobsen N, Baden C, Jørgensen R, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. IPGRI, RomeGoogle Scholar
  46. Wang H, Sun D, Sun G (2011) Molecular phylogeny of diploid Hordeum species and incongruence between chloroplast and nuclear datasets. Genome 54:986–992CrossRefPubMedGoogle Scholar
  47. Wang Y, Ren X, Sun D, Sun G (2015) Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content. Front Plant Sci 6:803PubMedPubMedCentralGoogle Scholar
  48. Weiss E, Kislev ME, Simchoni O, Nadel D, Tschauner H (2008) Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. J Archaeol Sci 35:2400–2414CrossRefGoogle Scholar
  49. Yen C, Yang JL (2009) Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae). Breed Sci 59:513–518CrossRefGoogle Scholar
  50. Yen C, Yang JL, Yen Y (2005) Hitoshi Kihara, Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotax Sin 43:82–93CrossRefGoogle Scholar
  51. Zohary D (1959) Is Hordeum agriocrithon the ancestor of six-rowed cultivated barley? Evolution 13:279–280CrossRefGoogle Scholar
  52. Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford Univ Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations