Genetics of Whole Plant Morphology and Architecture

  • Laura RossiniEmail author
  • Gary J. Muehlbauer
  • Ron Okagaki
  • Silvio Salvi
  • Maria von Korff
Part of the Compendium of Plant Genomes book series (CPG)


Plant architectural features directly impact plant fitness and adaptation, and traits related to plant morphology and development represent important targets for crop breeding. Decades of mutagenesis research have provided a wealth of mutant resources, making barley (Hordeum vulgare L.) an interesting model for genetic dissection of grass morphology and architecture. Recent advances in genomics have propelled the identification of barley genes controlling different aspects of shoot and root development. In addition to gene discovery, it is important to understand the interplay between different developmental processes in order to support breeding of improved ideotypes for sustainable barley production under different climatic conditions. The purpose of the present chapter is to: (i) provide an overview of the morphology and development of shoot and root structures in barley; (ii) discuss novel insights into the genetic, molecular and hormonal mechanisms regulating root and shoot development and architecture; and (iii) highlight the genetic and physiological interactions among organs and traits with special focus on correlations between leaf and tiller development, flowering and tillering, as well as row-type and tillering.


Hordeum vulgare Barley Plant height Tillering Root architecture Leaf patterning 



LR wishes to acknowledge FACCE ERA-NET funding under projects BarPLUS (ERA-NET FACCE SURPLUS grant no. 93) and ClimBar (ERA-NET FACCE on Climate Smart Agriculture) for supporting research on genetics of barley plant architecture in her laboratory. MK acknowledges funding by the German Cluster of Excellence on Plant Sciences (CEPLAS) EXC1028, the Priority Programme (SPP1530 Flowering time control—from natural variation to crop improvement) and the Max Planck Society.

Authors’ Contributions

LR, GJM, SS and MK conceived the layout of the chapter. GJM and RO wrote Sects. 13.1.1, 13.2.2 and 13.2.3, prepared Figs. 13.1, 13.2, 13.5 and Table 13.2. SS wrote Sects. 13.1.2 and 13.3, prepared Figs. 13.3 and 13.4. MK wrote Sects. 13.2.4 and 13.2.5. LR wrote Sects. 13.2.1 and 13.4, prepared Table 13.1, and integrated contributions from other authors. All authors reviewed and approved the final version of the chapter.


  1. Adams MW (1967) Basis of yield components compensation in crop plants with special reference to field bean (Phaseolus vulgaris L.). Crop Sci 7(5):505–510CrossRefGoogle Scholar
  2. Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19(2):458–472PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alqudah AM, Koppulu R, Wolde GM, Graner A, Schnurbusch T (2016) The genetic architecture of barley plant stature. Front Genet 7:117PubMedPubMedCentralCrossRefGoogle Scholar
  4. Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Well DM, Bennett MJ (2014) Branching out in roots: uncovering form, function, and regulation. Plant Physiol 166(2):538–550PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alqudah AM, Sharma R, Pasam RK, Graner A, Kilian B, Schnurbusch T (2014) Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One 9(11):e113120Google Scholar
  6. Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106(5):846–857PubMedCrossRefPubMedCentralGoogle Scholar
  7. Balzan S, Johal GS, Carraro N (2014) The role of auxin transporters in monocots development. Front Plant Sci 5:393PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergal P, Clemencet M (1962) The botany of the barley plant. In: Cook AH (ed) Barley and malt: biology, biochemistry and technology. Academic Press, New YorkGoogle Scholar
  9. Borràs G, Romagosa I, van Eeuwijk F, Slafer G (2009) Genetic variability in the duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crop Res 113(2):95–104CrossRefGoogle Scholar
  10. Bossinger G, Lundqvist U, Rohde W, Salamini F (1992) Genetics of plant development in barley. In: Munck L (ed) Barley genetics VI, vol II. Munksgaard International Publishers, Copenhagen, pp 989–1017Google Scholar
  11. Bovina R, Talamè V, Ferri M, Tuberosa R, Chmielewska B, Szarejko I, Sanguineti MC (2011) Identification of root morphology mutants in barley. Plant Genet Res 9(2):357–360CrossRefGoogle Scholar
  12. Braumann I, Dockter C, Beier S, Himmelbach A, Lok F, Lundqvist U, Skadhauge B, Stein N, Zakhrabekova S, Shou R, Hansson M (2018) Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for the brachytic1 semi-dwarf phenotype in barley and applicable for practical breeding. Hereditas 155:10PubMedCrossRefPubMedCentralGoogle Scholar
  13. Briggs DE (1978) The morphology of barley; the vegetative phase. In: “Barley” Briggs DE, Chapman and Hall, London, pp 1–38. ISBN-13: 978-94-009-5717-6Google Scholar
  14. Broughton S, Zhou G, Teakle N, Matsuda R, Zhou M, O’Leary R, Colmer T, Li C (2015) Waterlogging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Mol Breed 35(1):27Google Scholar
  15. Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WT, Guo W et al (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Commun 8(1):936CrossRefGoogle Scholar
  16. Busch BL, Schmitz G, Rossmann S, Piron F, Ding J et al (2011) Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23(10):3595–3609PubMedPubMedCentralCrossRefGoogle Scholar
  17. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40(1):143–150PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cao H, Chen S (1995) Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul 16(2):189–196CrossRefGoogle Scholar
  19. Chandler PM, Harding CA (2013) ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’ DELLA gene. J Exp Bot 64(6):1603–1613PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chandler PM, Robertson M (1999) Gibberellin dose-response curves and the characterization of dwarf mutants of barley. Plant Physiol 120(2):623–632PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol 129(1):181–190PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chandler PM, Harding CA, Ashton AR, Mulcair MD, Dixon NE, Mander LN (2008) Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.). Mol Plant 1(2):285–294PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen G, Krugman T, Fahima T, Chen K, Hu Y, Roder M, Nevo E, Korol A (2009) Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. Genet Resour Crop Evol 57(1):85–99CrossRefGoogle Scholar
  24. Chloupek O, Forster BP, Thomas WT (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112(5):779–786PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chmielewska B, Janiak A, Karcz J, Guzy-Wrobelska J, Forster BP, Nawrot M, Rusek A, Smyda P, Kedziorski P, Maluszynski M, Szarejko I (2014) Morphological, genetic and molecular characteristics of barley root hair mutants. J Appl Genet 55(4):433–447PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K et al (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133(3):1209–1219PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cline MG (1997) Concepts and terminology of apical dominance. Am J Bot 84(8):1064–1069PubMedCrossRefPubMedCentralGoogle Scholar
  28. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell wall. Curr Opin Plant Biol 25:162–172PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dabbert T, Okagaki R, Cho S, Boddu J, Muehlbauer GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118(7):1351–1360PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121(4):705–717PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dahleen L, Franckowiak JD, Lundqvist U (2007) Barley Genet Newslett 37. URL:
  33. Digel B, Pankin A, von Korff M (2015) Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell 27(9):2318–2334PubMedPubMedCentralCrossRefGoogle Scholar
  34. Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M (2016) Photoperiod-H1 (Ppd-H1) controls leaf size. Plant Physiol 172(1):405–415PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dockter C, Hansson M (2015) Improving barley culm robustness for secured crop yield in a changing climate. J Exp Bot 66(12):3499–3509PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Müller AH, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166(4):1912–1927PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dodd IC, Diatloff E (2016) Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild-type plants. Funct Plant Biol 43(2):199–206Google Scholar
  38. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488PubMedCrossRefGoogle Scholar
  39. Donald CM (1968) The breeding of crop ideotypes. Euphytica 17(3):385–403CrossRefGoogle Scholar
  40. Doring HP, Lin J, Uhrig H, Salamini F (1999) Clonal analysis of the development of the barley (Hordeum vulgare L.) leaf using periclinal chlorophyll chimeras. Planta 207(3):335–342CrossRefGoogle Scholar
  41. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155(2):617–627PubMedCrossRefGoogle Scholar
  42. Fletcher GM, Dale JE (1974) Growth of tiller buds in barley: effects of shade treatment and mineral nutrition. Ann Bot 38(1):63–76CrossRefGoogle Scholar
  43. Fonesca S, Patterson L (1968) Hybrid vigour in seven parental diallel crosses in common winter wheat. Crop Sci 8:85–88CrossRefGoogle Scholar
  44. Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I, Thomas WTB (2007) The barley phytomer. Ann Bot 100(4):725–733PubMedPubMedCentralCrossRefGoogle Scholar
  45. Franckowiak JD, Lundqvist U (2002) Barley Genet Newslett 32. URL:
  46. Gahoonia TS, Nielsen NE (2003) Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low-and high-P soils. Plant, Cell Environ 26(10):1759–1766CrossRefGoogle Scholar
  47. Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432(7017):630–635PubMedCrossRefPubMedCentralGoogle Scholar
  48. Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30(8):875–889CrossRefGoogle Scholar
  49. Gebeyehou G, Knott DR, Baker RJ (1982) Relationships among duration of vegetative and grain filling phases, yield components and grain yield in durum wheat cultivars. Crop Sci 22(2):287–290CrossRefGoogle Scholar
  50. George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WTB (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol 203(1):195–205PubMedCrossRefGoogle Scholar
  51. Gong X, McDonald G (2017) QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. Theor Appl Genet 130(9):1885–1902PubMedCrossRefPubMedCentralGoogle Scholar
  52. Goto Y, Tanabe M, Ishibashi T, Tsutsumi N, Yoshimura A, Nemoto K (2005) Tillering behavior of the rice fine culm 1 mutant. Plant Prod Sci 8(1):68–70CrossRefGoogle Scholar
  53. Grando S, Ceccarelli S (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86(1):73–80CrossRefGoogle Scholar
  54. Hedden P (2003) The genes of the Green Revolution. Trends Genet 19(1):5–9PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hedden P, Sponsel V (2015) A century of Gibberellin research. J Plant Growth Regul 34(4):740–760PubMedPubMedCentralCrossRefGoogle Scholar
  56. Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98(4):2065–2070PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hemming M, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 282(2):107–117PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hiraoka K, Yamaguchi A, Abe M, Araki T (2013) The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol 54(3):352–368PubMedCrossRefPubMedCentralGoogle Scholar
  59. Houston K, McKim SM, Comadran J, Bonar N, Druka I, Uzrek N et al (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA 110(41):16675–16680PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hussien A, Tavakol E, Horner DS, Munoz-Amatriain M, Muehlbauer GJ, Rossini L (2014) Genetics of tillering in rice and barley. Plant Genome 7(1):1–20CrossRefGoogle Scholar
  61. Ito A, Yasuda A, Yamaoka K, Ueda M, Nakayama A, Takasuto S, Honda I (2017) Brachytic1 of barley (Hordeum vulgare L.) encodes the α subunit of heterotrimeric G protein. J Plant Physiol 213:209–215PubMedCrossRefGoogle Scholar
  62. Jackson VG (1922) Anatomical structure of the roots of barley. Ann Bot 36(141):21–39CrossRefGoogle Scholar
  63. Jeon JS, Jung KH, Kim HB, Suh JP, Khush GS (2011) Genetic and molecular insights into the enhancement of rice yield potential. J Plant Biol 54(1):1–9CrossRefGoogle Scholar
  64. Johnston R, Wang M, Sun Q, Sylvester AW, Hake S, Scanlon MJ (2014) Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. Plant Cell 26(12):4718–4732PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jost M, Hensel G, Kappel C, Druka A, Sicard A, Hohmann U, Beier S, Himmelbach A, Waugh R, Kumlehn J, Stein N, Lenhard M (2016) The INTERMEDIATE DOMAIN protein BROAD LEAF1 limits barley leaf width by restricting lateral proliferation. Curr Biol 26(7):903–909PubMedCrossRefPubMedCentralGoogle Scholar
  66. Karsai I, Eszaros KM, Szucs P, Hayes PM, Lang L, Bedo Z (1999) Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population. Plant Breed 118(5):399–403CrossRefGoogle Scholar
  67. Karsai I, Szücs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110(8):1458–1466PubMedCrossRefGoogle Scholar
  68. Karsai I, Meszaros K, Szücs P, Hayes PM, Lang L, Bedo Z (2006) The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative × winter barley (Hordeum vulgare L.) mapping population. Plant Breed 125(5):468–472CrossRefGoogle Scholar
  69. Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101(7):1114–1121CrossRefGoogle Scholar
  70. Kaur R, Singh K, Singh J (2013) A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct Integr Genomics 13(2):167–177Google Scholar
  71. Kebrom TH, Brutnell TP, Finlayson SA (2010) Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environ 33(1):45–58Google Scholar
  72. Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160(1):308–318PubMedPubMedCentralCrossRefGoogle Scholar
  73. Khush GS (2013) Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed 132(5):433–436Google Scholar
  74. Kirby E, Appleyard M (1987) Cereal development guide, 2nd edn. Arable Unit, Stoneleigh, WarwickshireGoogle Scholar
  75. Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot 62(2):717–733PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kołodziejek I, Wałęza M, Mostowska A (2006) Morphological, histochemical and ultrastructural indicators of maize and barley leaf senescence. Biol Plant 50(4):565–573CrossRefGoogle Scholar
  77. Komatsuda T, Pourkheirandish M, He CF, Azhaguvel P, Kanamori H, Perovic D et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104(4):1424–1429PubMedCrossRefPubMedCentralGoogle Scholar
  78. Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, Pourkheirandish M et al (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc Natl Acad Sci USA 110(32):13198–13203PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kotula L, Clode PL, Striker GG, Pedersen O, Läuchli A, Shabala S, Colmer TD (2015) Oxygen deficiency and salinity affect cell specific ion concentrations in adventitious roots of barley (Hordeum vulgare). New Phytol 208(4):1114–1125PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P (2013) Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet 54(4):381–390PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of beta-expansion gene related to root hair formation in barley. Plant Physiol 141(3):1149–1158Google Scholar
  82. Kwasniewski M, Nowakowska U, Szumera J, Chwialkowska K, Szarejko I (2013) iRootHair: a comprehensive root hair genomics database. Plant Physiol 161:28–35. Accessed 6 Mar 2018
  83. Lavenus J, Guyomarc’h S, Laplaze L (2016) PIN transcriptional regulation shapes root system architecture. Trends Plant Sci 21(3):175–177PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lewis MW, Hake S (2016) Keep on growing: building and patterning leaves in the grasses. Curr Opin Plant Biol 29:80–86PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng D et al (2003) Control of tillering in rice. Nature 422(6932):618–621PubMedCrossRefPubMedCentralGoogle Scholar
  86. Liller CB, Neuhaus R, von Korff M, Koornneef M, van Esse W (2015) Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS ONE 10(10):e0140246PubMedPubMedCentralCrossRefGoogle Scholar
  87. Linde-Laursen I (1977) Barley mutant with few roots. Barley Genet Newslett 7:43–45Google Scholar
  88. Lundqvist U (2014) Scandinavian mutation research in barley—a historical review. Hereditas 151(6):123–131PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lundqvist U, Franckowiak JD (2013) Barley Genet Newslett 43. URL:
  90. Lundqvist U, Franckowiak JD (2014) Barley Genet Newslett 44. URL:
  91. Lundqvist U, Lundqvist A (1987) An intermedium gene present in a commercial 6-row variety of barley. Hereditas 107(2):131–135CrossRefGoogle Scholar
  92. Lundqvist U, Lundqvist A (1988) Induced intermedium mutants in barley—origin. Morphology and inheritance. Hereditas 108(1):13–26CrossRefGoogle Scholar
  93. Luxová M (1986) The seminal root primordia in barley and the participation of their non-meristematic cells in root construction. Biol Plantarum 28(3):161–167CrossRefGoogle Scholar
  94. Luxová M (1989) The vascular system in the roots of barley and its hydraulic aspects. In: Loughman BC, Gasparikova O, Kolek J (eds) Structural and functional aspects of transport in roots. Kluwer Academic Publisher, Dordrecht, pp 15–20CrossRefGoogle Scholar
  95. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112(2):347–357PubMedPubMedCentralCrossRefGoogle Scholar
  96. MacLeod AM, Palmer GH (1966) The embryo of barley in relation to modification of the endosperm. J Inst Brew 72(6):580–589CrossRefGoogle Scholar
  97. Martınez AE, Franzone PM, Aguinaga A, Polenta G, Murray R, Prina AR (2004) A nuclear gene controlling seminal root growth response to hydroponic cultivation in barley. Environ Exp Bot 51(2):133–144CrossRefGoogle Scholar
  98. Martre P, Quilot-Turion B, Luquet D, Ould-Sidi Memmah MM, Chenu K, Debaeke P (2015) Model-assisted phenotyping and ideotype design. In: Sadras V, Calderini D (eds) Crop physiology. Applications for genetic improvement and agronomy, 2nd edn. Academic Press, LondonGoogle Scholar
  99. Marzec M, Melzer M, Szarejko I (2015) Root hair development in the grasses: what we already know and what we still need to know. Plant Physiol 168(2):407–414PubMedPubMedCentralCrossRefGoogle Scholar
  100. Marzec M, Gruszka D, Tylec P, Szarejko I (2016) Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol Plant 158(3):341–355PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78PubMedPubMedCentralCrossRefGoogle Scholar
  102. Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107(7):1203–1212PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6):1081Google Scholar
  104. Nardmann J, Ji J, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131(12):2827–2839PubMedCrossRefPubMedCentralGoogle Scholar
  105. Naz AA, Ehl A, Pillen K, Léon J (2012) Validation for root-related quantitative trait locus effects of wild origin in the cultivated background of barley (Hordeum vulgare L.). Plant Breed 131(3):392–398CrossRefGoogle Scholar
  106. Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Léon J (2014) Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet 15(1):107PubMedPubMedCentralCrossRefGoogle Scholar
  107. Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T (2013) BRANCHED1 Interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25(4):1228–1242PubMedPubMedCentralCrossRefGoogle Scholar
  108. Norberg M, Holmlund M, Nilsson O (2005) The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132(9):2203–2213PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ogrodowicz P, Adamski T, Mikołajczak K, Kuczyńska A, Surma M, Krajewski P, Sawikowska A, Górny AG, Gudyś K, Szarejko I, Guzy-Wróbelska J, Krystkowiak K (2017) QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes. J Appl Genet 58(1):49–65PubMedCrossRefPubMedCentralGoogle Scholar
  110. Okagaki RJ, Haaning A, Bilgic H, Heinen S, Druka A, Bayer M, Waugh R, Muehlbauer GJ (2018) ELIGULUM-A regulates lateral branch and leaf development in barley. Plant Physiol 176:2750–2760Google Scholar
  111. Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18(8):459–467PubMedCrossRefPubMedCentralGoogle Scholar
  112. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112(28):8529–8536PubMedCrossRefPubMedCentralGoogle Scholar
  113. Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55(8):895–906CrossRefGoogle Scholar
  114. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261PubMedCrossRefPubMedCentralGoogle Scholar
  115. Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield potential. Field Crop Res 108(1):32–38CrossRefGoogle Scholar
  116. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43(2):169–172PubMedCrossRefGoogle Scholar
  117. Ritter MK, Padilla CM, Schmidt RJ (2002) The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot 89(2):203–210PubMedCrossRefPubMedCentralGoogle Scholar
  118. Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K, Blank M, Janiak A, Szarejko I, Chmielewska B, Karcz J, Morris J, Hedley PE, George TS, Bulgarelli D (2017) Root hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1094PubMedPubMedCentralCrossRefGoogle Scholar
  119. Robinson H, Hickey L, Richard C, Mace E, Kelly A, Borrell A, Franckowiak J, Fox G (2016) Genomic regions influencing seminal root traits in barley. Plant Genome 9(1)Google Scholar
  120. Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126(11):2803–2824PubMedCrossRefGoogle Scholar
  121. Rossini L, Okagaki R, Druka A, Muehlbauer GJ (2014) Shoot and inflorescence architecture. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 55–80. ISBN 978-3-662-44405-4CrossRefGoogle Scholar
  122. Saisho D, Tanno K, Chono M, Honda I, Kitano H, Takeda K (2004) Spontaneous brassinolide-insensitive barley mutants “uzu” adapted to East Asia. Breed Sci 54(4):409–416CrossRefGoogle Scholar
  123. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M et al (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotech 24(1):105–109CrossRefGoogle Scholar
  124. Salvi S (2017) An evo-devo perspective on root genetic variation in cereals. J Exp Bot 68(3):351–354PubMedPubMedCentralCrossRefGoogle Scholar
  125. Salvi S, Porfiri O, Ceccarelli S (2013) Nazareno Strampelli, the ‘Prophet’ of the green revolution. J Agric Sci 151(1):1–5CrossRefGoogle Scholar
  126. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sayed MA, Hamada A, Lèon J, Naz AA (2017) Genetic mapping reveals novel exotic QTL alleles for seminal root architecture in barley advanced backcross double haploid population. Euphytica 213(1):2CrossRefGoogle Scholar
  128. Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122(6):1683–1691PubMedPubMedCentralGoogle Scholar
  129. Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8(5):506–511PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sharma D, Sanghera GS, Sahu P, Sahu P, Parikh M, Sharma B et al (2013) Tailoring rice plants for sustainable yield through ideotype breeding and physiological interventions. Afr J Agric Res 8(40):5004–5019Google Scholar
  131. Sharman BC (1942) Developmental anatomy of the shoot Zea mays L. Ann Bot 6(2):245–282CrossRefGoogle Scholar
  132. Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283(5407):1456–1456CrossRefGoogle Scholar
  133. Smith S, De Smet Ive (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond B Biol Sci 367(1595):1441–1452PubMedPubMedCentralCrossRefGoogle Scholar
  134. Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inforescence. Plant Cell 15(8):1717–1727PubMedPubMedCentralCrossRefGoogle Scholar
  135. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99(13):9043–9048PubMedCrossRefPubMedCentralGoogle Scholar
  136. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43(11):1160–1164PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sylvester AW, Cande WZ, Freeling M (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110(3):985–1000PubMedPubMedCentralGoogle Scholar
  138. Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6(5):477–485PubMedCrossRefPubMedCentralGoogle Scholar
  139. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036PubMedCrossRefPubMedCentralGoogle Scholar
  140. Taramino G, Sauer M, Stauffer JL, Multani D, Niu XM, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and postembryonic shoot-borne root initiation. Plant J 50(4):649–659PubMedCrossRefPubMedCentralGoogle Scholar
  141. Tavakol E, Okagaki R, Verderio G, Shariati JV, Hussien A et al (2015) The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-Like protein that controls tillering and leaf patterning. Plant Physiol 168(1):164–174PubMedPubMedCentralCrossRefGoogle Scholar
  142. Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A, Hensel G, Kumlehn J, Bräutigam A, Sreenivasulu N, Schnurbusch T, Kuhlmann M (2017) Leaf primordium size specifies leaf width and vein number among row-type classes in barley. Plant J 91(4):601–612PubMedCrossRefPubMedCentralGoogle Scholar
  143. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034PubMedCrossRefPubMedCentralGoogle Scholar
  144. van Esse W, Walla A, Finke A, Koornneef M, Pecinka A, von Korff M (2017) Six-rowed spike 3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174(4):2397–2408PubMedPubMedCentralCrossRefGoogle Scholar
  145. von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X, Sakai H, Taramino G, Hochholdinger F (2011) Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. Plant J 66(2):341–353CrossRefGoogle Scholar
  146. von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112(7):1221–1231CrossRefGoogle Scholar
  147. Voss-Fels KP, Robinson H, Mudge SR, Richard C, Newman S, Wittkop B, Stahl A, Friedt W, Frisch M, Gabur I, Miller-Cooper A, Campbell BC, Kelly A, Fox G, Christopher J, Christopher M, Chenu K, Franckowiak J, Mace ES, Borrell AK, Eagles H, Jordan DR, Botella JR, Hammer G, Godwin ID, Trevaskis B, Snowdon RJ, Hickey LT (2018) VERNALIZATION1 modulates root system architecture in wheat and barley. Mol Plant 11(1):226–229PubMedCrossRefPubMedCentralGoogle Scholar
  148. Vriet C, Russinova E, Reuzeaua C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120(8):1559–1574PubMedPubMedCentralCrossRefGoogle Scholar
  150. Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322PubMedCrossRefPubMedCentralGoogle Scholar
  151. Weatherwax P (1923) The story of the maize plant. University of Chicago Press, ChicagoGoogle Scholar
  152. Wendt T, Holme I, Dockter C, Preuû A, Thomas W, Druka A et al (2016) HvDep1 Is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11(12):e0168924PubMedPubMedCentralCrossRefGoogle Scholar
  153. White PJ, Bengough AG, Bingham IJ, George TS, Karley AJ, Valentine TA (2009) Induced mutations affecting root architecture and mineral acquisition in barley. In: Shu QY (ed) Induced plant mutations in the genomics era. Joint FAO/IAEA division of nuclear techniques in food and agriculture. IAEA, Vienna, pp 338–340Google Scholar
  154. Xu Y, Jia Q, Zhou G, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang W, Li C (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17(1):11PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S et al (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1605PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100(10):6263–6268PubMedCrossRefPubMedCentralGoogle Scholar
  157. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644PubMedPubMedCentralCrossRefGoogle Scholar
  158. Yoshikawa T, Tanaka SY, Masumoto Y, Nobori N, Ishii H, Hibara KI et al (2016) Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. Breed Sci 66(3):416–424PubMedPubMedCentralCrossRefGoogle Scholar
  159. Yu P, Gutjahr C, Li C, Hochholdinger F (2016) Genetic control of lateral root formation in cereals. Trends Plant Sci 21(11):951–961PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zhang C, Bai MY, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33(5):683–696PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zhang X, Zhou G, Shabala S, Koutoulis A, Shabala L, Johnson P, Li C, Zhou M (2016) Identification of aerenchyma formation related QTL in barley that can be effective in breeding for waterlogging tolerance. Theor Appl Genet 129(6):1167–1177PubMedCrossRefPubMedCentralGoogle Scholar
  162. Zhang X, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H, Zhou M (2017) A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor Appl Genet 130(8):1559–1568PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zhao J, Sun H, Dai H, Zhang G, Wu F (2010) Differences in response to drought stress among Tibet wild barley genotypes. Euphytica 172(3):395–403CrossRefGoogle Scholar
  164. Zheng R, Li H, Jiang R, Römheld V, Zhang F, Zhao FJ (2011) The role of root hairs in cadmium acquisition by barley. Environ Pollut 159(2):408–415PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laura Rossini
    • 1
    Email author
  • Gary J. Muehlbauer
    • 2
    • 3
  • Ron Okagaki
    • 3
  • Silvio Salvi
    • 4
  • Maria von Korff
    • 5
    • 6
    • 7
  1. 1.Università degli Studi di Milano, DiSAAMilanItaly
  2. 2.Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulUSA
  3. 3.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA
  4. 4.Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
  5. 5.Max Planck Institute for Plant Breeding ResearchCologneGermany
  6. 6.Institute for Plant Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  7. 7.Cluster of Excellence in Plant Sciences, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations