Advertisement

Barley Inflorescence Architecture

  • Sarah M. McKim
  • Ravi Koppolu
  • Thorsten Schnurbusch
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Cultivated barley, Hordeum vulgare ssp. vulgare, is the fourth most abundantly grown cereal in the world (www.fao.org/faostat) and is long associated with human civilisations. Although most barley grain grown today is destined for animal feed and malting, barley remains an important source of primary calories in many parts of the world. Increasing barley yield in the face of challenges posed by increasing world population and climate change is a major goal of current research efforts. Grain is the ultimate product of inflorescence development and maturation. As such, understanding the genetics underlying inflorescence architecture in barley and then learning how to apply this knowledge to manipulate inflorescence development are important steps towards improving yield. The barley reference genome sequence represents an invaluable resource to support the identification and functional characterization of genes controlling inflorescence architecture. Resolving the relationships between gene and inflorescence traits are critical to support breeding as well as to provide insight about fundamental questions in cereal developmental biology. In this chapter, we first provide an overview of inflorescence development in cereals, highlighting the transitions in meristem identity associated with species-specific architectures. From here, we describe the development of key morphological features associated with the barley spike, spikelet, floret and grain, while discussing the identification and functions of genes which regulate their development. We also discuss those genes whose variation contributed to architectural changes during domestication and those with yield potential. Lastly, we describe environmental control of inflorescence development, with special attention to flowering time and the agronomic environment.

Bibliography

  1. Abebe T, Wise RP, Skadsen RW (2009) Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the lemma and the palea primarily protect the seed. Plant Genome 2:247–259CrossRefGoogle Scholar
  2. Åberg E, Wiebe G (1945) Ash content of barley awns and kernels as influenced by location, season and variety. J Agron 37:583–586CrossRefGoogle Scholar
  3. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. Plant Cell 16:2463–2480PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alqudah AM, Schnurbusch T (2014) Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct Plant Biol 41:424–436CrossRefGoogle Scholar
  5. Alqudah AM, Sharma R, Pasam RK, Graner A, Kilian B et al (2014) Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS ONE 9:e113120PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alqudah AM, Koppolu R, Wolde GM, Graner A, Schnurbusch T (2016) The genetic architecture of barley plant stature. Front Genet 7Google Scholar
  7. Amanda S-L, Harry K, Amanda F, Madelaine B (2017) Grass flowers: an untapped resource for floral evo-devo. J Syst Evol 55:525–541Google Scholar
  8. Arber A (1934) The Gramineae: a study of cereal, bamboo, and grass. Cambridge University Press, New YorkGoogle Scholar
  9. Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, Zhou R, Steuernagel B, Gundlach H, Taudien S, Felder M, Platzer M, Himmelbach A, Schmutzer T, Hedley PE, Muehlbauer GJ, Scholz U, Korol A, Mayer KFX, Waugh R, Langridge P, Graner A, Stein N (2014) A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol 164:412–423PubMedCrossRefPubMedCentralGoogle Scholar
  10. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15:2730–2741Google Scholar
  11. Bell AD (1991) Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, OxfordGoogle Scholar
  12. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III Effectors. Science 326:1509–1512PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B et al (2014) EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. Plant Cell 26:1557–1569PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H-Y (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bonnett OT (1935) The development of the barley spike. J Agric Res 51:451–457Google Scholar
  16. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R et al (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bossinger GLU, Rohde W, Salamini F (1992) Genetics of plant development in barley. In: Munck L (ed) Barley genetics VI. Munksgaard International Publishers, Copenhagen, Denmark, pp 989–1017Google Scholar
  18. Brennan M, Shepherd T, Mitchell S, Topp CFE, Hoad SP (2017) Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis. BMC Plant Biol 17:169Google Scholar
  19. Brown RH, Bregitzer P (2011) A Ds insertional mutant of a barley mir172 gene results in indeterminate spikelet development. Crop Sci 51:1664–1672CrossRefGoogle Scholar
  20. Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WTB et al (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nat Commun 8(1):936PubMedPubMedCentralCrossRefGoogle Scholar
  21. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefPubMedCentralGoogle Scholar
  22. Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880PubMedCrossRefPubMedCentralGoogle Scholar
  23. Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ et al (2013) HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199:1045–1059PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carriedo LG, Maloof JN, Brady SM (2016) Molecular control of crop shade avoidance. Curr Opin Plant Biol 30:151–158PubMedCrossRefPubMedCentralGoogle Scholar
  25. Casal JJ (1988) Persistent effects of changes in phytochrome status on internode growth in light-grown mustard: Occurrence, kinetics and locus of perception. Planta 175:214–220PubMedCrossRefPubMedCentralGoogle Scholar
  26. Casal JJ, Deregibus VA (1986) The effect of plant density on tillering: the involvement of R/FR ratio and the proportion of radiation intercepted per plant. Environ Exp Bot 26:365–371CrossRefGoogle Scholar
  27. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025Google Scholar
  28. Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet 8:e1003134PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D et al (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241PubMedCrossRefPubMedCentralGoogle Scholar
  31. Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W et al (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cockram J, Horsnell R, Soh EH, Norris C, O’Sullivan DM (2015) Molecular and phenotypic characterization of the alternative seasonal growth habit and flowering time in barley (Hordeum vulgare ssp. vulgare L.). Mol Breed 35:165Google Scholar
  34. Coen ES, Nugent JM (1994) Evolution of flowers and inflorescences. Development 1994:107–116Google Scholar
  35. Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher M (2015) BARLEX—the Barley draft genome explorer. Mol Plant 8:964–966PubMedCrossRefGoogle Scholar
  36. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J et al (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–715PubMedCrossRefPubMedCentralGoogle Scholar
  38. Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB et al (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860PubMedPubMedCentralCrossRefGoogle Scholar
  39. Debernardi JM, Lin H, Chuck G, Faris JD, Dubcovsky J (2017) microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144:1966–1975PubMedPubMedCentralCrossRefGoogle Scholar
  40. Derbyshire P, Byrne ME (2013) MORE SPIKELETS1 is required for spikelet fate in the inflorescence of brachypodium. Plant Physiol 161:1291–1302PubMedPubMedCentralCrossRefGoogle Scholar
  41. Digel B, Pankin A, von Korff M (2015) Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell 27:2318–2334PubMedPubMedCentralCrossRefGoogle Scholar
  42. Djalali M (1970) Investigations on expressivity and penetrance of labile character of barley (Hordeum vulgare L.). Z Pflanzenzüchtung 63:274–322Google Scholar
  43. Dockter C, Gruszka D, Braumann I, Druka A, Druka I et al (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166:1912–1927PubMedPubMedCentralCrossRefGoogle Scholar
  44. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  45. Doust A (2007) Architectural evolution and its implications for domestication in grasses. Ann Bot 100:941–950PubMedPubMedCentralCrossRefGoogle Scholar
  46. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627PubMedCrossRefGoogle Scholar
  47. Drummond RSM, Janssen BJ, Luo Z, Oplaat C, Ledger SE et al (2015) Environmental control of branching in Petunia. Plant Physiol 168:735–751PubMedPubMedCentralCrossRefGoogle Scholar
  48. Duan R, Xiong H, Wang A, Chen G (2015) Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare l.). Int J Mol Sci 16:14181PubMedPubMedCentralCrossRefGoogle Scholar
  49. Eklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C et al (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363PubMedPubMedCentralCrossRefGoogle Scholar
  50. Endress PK (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Syst Evol 48:225–239CrossRefGoogle Scholar
  51. Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396PubMedCrossRefGoogle Scholar
  52. Engeldow FL (1920) Inheritance in barley. I. The lateral florets and the rachilla. J Genet 10:93–108CrossRefGoogle Scholar
  53. Engledow F (1921) Inheritance in barley. II. The awn and the lateral floret. J Agric Sci 11:159–196CrossRefGoogle Scholar
  54. Engledow FL (1924) Inheritance in barley. III. The awn and the lateral floret (cont’d): fluctuation: a linkage: multiple allelomorphs. J Genet 14:49–87CrossRefGoogle Scholar
  55. Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C et al (2014) Regulatory modules controlling maize inflorescence architecture. Genome Res 24:431–443PubMedPubMedCentralCrossRefGoogle Scholar
  56. Evers JB, Bastiaans L (2016) Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. J Plant Res 129:339–351PubMedPubMedCentralCrossRefGoogle Scholar
  57. Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609PubMedPubMedCentralCrossRefGoogle Scholar
  58. Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ et al (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. P Natl Acad Sci USA 109:8328–8333CrossRefGoogle Scholar
  59. Fernández GJ, Wilson ZA (2014) A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol 12:765–777CrossRefGoogle Scholar
  60. Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in arabidopsis. Plant Physiol 152:1914–1927PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ford-Lloyd B, Engels JMM, Jackson M (2014) Genetic resources and conservation challenges under the threat of climate change. In: Jackson M, Ford-Lloyd, B., Parry, M (eds) Plant genetic resources and climate changeGoogle Scholar
  62. Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I et al (2007) The barley phytomer. Ann Bot 100:725–733PubMedPubMedCentralCrossRefGoogle Scholar
  63. Francia E, Tondelli A, Rizza F, Badeck FW, Li Destri Nicosia O et al (2011) Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crop Res 120:169–178CrossRefGoogle Scholar
  64. Franckowiack JD, Konishi T (1997) Naked caryopsis. Barley Genet Newslett 26:51–52Google Scholar
  65. Franckowiak JD (1997a) Smooth awn 2. Barley Genet Newslett 26:289Google Scholar
  66. Franckowiak JD (1997b) Smooth awn 1. Barley Genet Newslett 26:261Google Scholar
  67. Franckowiak JD (1997c) Rattail spike 1. Barley Genet Newsl 26:87Google Scholar
  68. Franckowiak JD (1997d) Multiflorus 2. Barley Genet Newsl 26:232Google Scholar
  69. Franckowiak JD (2005) Ovaryless 1. Barley Genet Newslett 35:191Google Scholar
  70. Franckowiak JD (2010a) Accordian rachis 1. Barley Genet Newsl 40:56–57Google Scholar
  71. Franckowiak JD (2010b) Accordian rachis 2. Barley Genet Newsl 40:65–66Google Scholar
  72. Franckowiak JD (2010c) Accordian rachis 3. Barley Genet Newsl 40:85–86Google Scholar
  73. Franckowiak JD (2010d) Small lateral spikelets 1. Barley Genet Newsl 40:78Google Scholar
  74. Franckowiak JD (2013) Absent lower laterals. Barley Genet Newsl 43:74–75Google Scholar
  75. Franckowiak JD (2014a) Long glume awn 1. Barley Genet Newslett 44:183–184Google Scholar
  76. Franckowiak JD (2014b) Rough awn 5. Barley Genet Newsl 44:112Google Scholar
  77. Franckowiak J, Lundqvist U (2010) Descriptions of barley genetic stocks for 2010. Barley Genet Newslett 40:45–177Google Scholar
  78. Franckowiak JD, Lundqvist U (2011a) Descriptions of barley genetic stocks for 2011. Barley Genet Newslett 40:45–177Google Scholar
  79. Franckowiak JD, Lundqvist U (2011b) Calcaroides-c. Barley Genet Newsl 41:195–196Google Scholar
  80. Franckowiak JD, Lundqvist U (2013) Barley Genet Newslett 43:64–66Google Scholar
  81. Franckowiak JD, Lundqvist U (2014) Barley Genet Newslett 44:93–94Google Scholar
  82. Franckowiak JD, Foster AE, Pederson VD, Pyler RE (1985) Registration of ‘Bowman’ barley. Crop Sci 25:883CrossRefGoogle Scholar
  83. Franckowiak JD, Kleinhofs A, Lundqvist U (2005) Descriptions of barley genetic stocks for 2005. Barley Genet Newslett 35:155–210Google Scholar
  84. Gaines RL, Bechtel DB, Pomeranz Y (1985) A microscopic study on the development of a layer in barley that causes hull-caryopsis adherence. Cereal Chem 62:35–40Google Scholar
  85. Gawroński P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B et al (2014) A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat. Genetics 196:1253–1261PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:1–14CrossRefGoogle Scholar
  87. Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214PubMedPubMedCentralCrossRefGoogle Scholar
  88. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256Google Scholar
  89. Greenwood JR, Finnegan EJ, Watanabe N, Trevaskis B, Swain SM (2017) New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development. Development 144:1959–1965PubMedCrossRefGoogle Scholar
  90. Gregory FG, Purvis ON (1947) Abnormal flower development in barley involving sex reversal. Nature 160:221–222CrossRefGoogle Scholar
  91. Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS ONE 9:e92046PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gustafsson ÅA, Hagberg A, Lundqvist U, Persson G (1969) A proposed system of symbols for the collection of barley mutants at Svalöv. Hereditas 62:409–414CrossRefGoogle Scholar
  93. Harlan HV (1920) Daily development of kernels of Hannchen barley from flowering to maturity, at Aberdeen Idaho. J Agric Res 19:393–429Google Scholar
  94. Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080PubMedCrossRefPubMedCentralGoogle Scholar
  95. Harvey BL, Reinbergs E, Somaroo BH (1968) Inheritance of female sterility in barley. Canad J Plant Science 48:417–418Google Scholar
  96. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391PubMedCrossRefPubMedCentralGoogle Scholar
  97. Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9PubMedCrossRefPubMedCentralGoogle Scholar
  98. Hein I, Pacak MB, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164PubMedPubMedCentralCrossRefGoogle Scholar
  99. Helback H (1959) Domestication of food plants in the old world. Joint efforts by botanists and archeologists illuminate the obscure history of plant domestication. Science 130:365–372PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366PubMedPubMedCentralCrossRefGoogle Scholar
  101. Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J (2011) Transgene expression systems in the Triticeae cereals. J Plant Physiol 168:30–44PubMedCrossRefPubMedCentralGoogle Scholar
  102. Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE–dependent signaling controls leaf and floral patterning in arabidopsis. Plant Cell 17:1434–1448PubMedPubMedCentralCrossRefGoogle Scholar
  103. Hoad SP, Brennan M, Wilson GW, Cochrane PM (2016) Hull to caryopsis adhesion and grain skinning in malting barley: identification of key growth stages in the adhesion process. J Cereal Sci 68:8–15CrossRefGoogle Scholar
  104. Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327PubMedCrossRefPubMedCentralGoogle Scholar
  105. Houston K, Druka A, Bonar N, Macaulay M, Lundqvist U et al (2012) Analysis of the barley bract suppression gene Trd1. Theor Appl Genet 125:33–45PubMedCrossRefPubMedCentralGoogle Scholar
  106. Houston K, McKim SM, Comadran J, Bonar N, Druka I, Uzrek N, Cirillo E, Guzy-Wrobelska J, Collins NC, Halpin C, Hansson M, Dockter C, Druka A, Waugh R (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. P Natl Acad Sci USA 110:16675–16680CrossRefGoogle Scholar
  107. Houston K, Burton RA, Sznajder B, Rafalski AJ, Dhugga KS, Mather DE, Taylor J, Steffenson BJ, Waugh R, Fincher GB (2015) A Genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE a gene family. PLoS ONE 10:e0130890Google Scholar
  108. IBSC (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  109. Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J-I, Nagato Y (2012) ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J 69:168–180PubMedCrossRefPubMedCentralGoogle Scholar
  110. Ivanova K (1937) A new character in barley, “third outer glume”: its inheritance and linkage with the colour of the flowering glumes. Bull Appl Bot Genet Plant Breed. (Russia) Series II 7:339–353Google Scholar
  111. Jeon J-S, Jang S, Lee S, Nam J, Kim C et al (2000) leafy hull sterile1 is a homeoticmutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884PubMedPubMedCentralGoogle Scholar
  112. Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M et al (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomic 9:255–262CrossRefGoogle Scholar
  113. Jost M, Taketa S, Mascher M, Himmelbach A, Yuo T et al (2016) A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence. Plant Physiol 171:1113–1127PubMedPubMedCentralGoogle Scholar
  114. Joung JK, Sander JD (2013) INNOVATION TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security—a review. Prog Nat Sci 19:1665–1674CrossRefGoogle Scholar
  116. Kannangara R, Branigan C, Liu Y, Penfield T, Rao V et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kebrom TH, Mullet JE (2015) Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ 38:1471–1478PubMedCrossRefPubMedCentralGoogle Scholar
  118. Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA et al (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kellogg EA (2015) Flowering plants. Monocots Poaceae. In: Kubitzky K (ed) The families and genera of vascular plants, p 408Google Scholar
  122. Kellogg E, Camara P, Rudall P, Ladd P, Malcomber S et al (2013) Early inflorescence development in the grasses (Poaceae). Front Plant Sci 4Google Scholar
  123. Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2011) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63:773–784PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kirby EJM, Appleyard M (1987) Cereal development guide, 2nd edn. Arable Unit, National Agricultural Centre, Warwickshire, Kenilworth, EnglandGoogle Scholar
  125. Kirby EJM, Riggs TJ (1978) Developmental consequences of two-row and six-row ear type in spring barley: 2. Shoot apex, leaf and tiller development. J Agric Sci 91:207–216CrossRefGoogle Scholar
  126. Kleinhofs A (2013) Ovaryless 2. Barley Genet Newslett 43:169Google Scholar
  127. Kleinhofs A, Franckowiak JD (2013) Multiovary 1. Barley Genet Newslett 43:59–60Google Scholar
  128. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712Google Scholar
  129. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850PubMedCrossRefGoogle Scholar
  130. Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995PubMedCrossRefGoogle Scholar
  131. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. P Natl Acad Sci USA 104:1424–1429CrossRefGoogle Scholar
  132. Konishi T, Franckowiak JD (2002) Multiovary 3. 32:101Google Scholar
  133. Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U et al (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. P Natl Acad Sci USA 110:13198–13203CrossRefGoogle Scholar
  134. Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E (2002) STY1 and STY2 promote the formation of apical tissues during arabidopsis gynoecium development. Development 129:4707–4717PubMedGoogle Scholar
  135. Laudencia-Chingcuanco D, Hake S (2002) The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development 129:2629–2638Google Scholar
  136. Laurie DA, Pratchett N, Snape JW, Bezant JH (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585PubMedCrossRefGoogle Scholar
  137. Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258PubMedPubMedCentralCrossRefGoogle Scholar
  138. Leonard WH (1942) Inheritance of reduced lateral spikelet appendages in the Nudihaxtoni variety of barley. J Am Soc Agron 34:211–221CrossRefGoogle Scholar
  139. Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703PubMedCrossRefPubMedCentralGoogle Scholar
  140. Liller CB, Neuhaus R, von Korff M, Koornneef M, van Esse W (2015) Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS ONE 10:e0140246PubMedPubMedCentralCrossRefGoogle Scholar
  141. Liller CB, Walla A, Boer MP, Hedley P, Macaulay M et al (2017) Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theor Appl Genet 130:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  142. Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104PubMedPubMedCentralCrossRefGoogle Scholar
  143. Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697PubMedPubMedCentralCrossRefGoogle Scholar
  144. Lombardo F, Yoshida H (2015) Interpreting lemma and palea homologies: a point of view from rice floral mutants. Front Plant Sci 6Google Scholar
  145. Lord EM (1981) Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot Rev 47:421–449Google Scholar
  146. Lundqvist U (2009) Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY (ed) Induced plant mutations in the genomics era food and agricultural organization of the United Nations, Rome, pp 39–43Google Scholar
  147. Lundqvist U, Franckowiak JD (2002) Calcaroides-e. Barley Genet Newsl 32:123Google Scholar
  148. Lundqvist U, Franckowiak JD (2010a) Compositum 1. Barley Genet Newsl 40:118–119Google Scholar
  149. Lundqvist U, Franckowiak JD (2010b) Calcaroides-d. Barley Genet Newsl 40:58–59Google Scholar
  150. Lundqvist U, Franckowiak JD (2011) Accordian rachis 4. Barley Genet Newsl 41:201Google Scholar
  151. Lundqvist U, Franckowiak JD (2014) Calcaroides-b. Barley Genet Newsl 44:197–198Google Scholar
  152. Lundqvist U, Lundqvist A (1988) Induced intermedium mutants in barley: origin, morphology and inheritance. Hereditas 108:13–26CrossRefGoogle Scholar
  153. Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newslett 26:22–516Google Scholar
  154. Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453PubMedCrossRefGoogle Scholar
  155. Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot Res 44:425–481CrossRefGoogle Scholar
  156. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500PubMedCrossRefGoogle Scholar
  157. Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727PubMedPubMedCentralCrossRefGoogle Scholar
  158. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505PubMedPubMedCentralCrossRefGoogle Scholar
  159. Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78PubMedPubMedCentralCrossRefGoogle Scholar
  160. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433Google Scholar
  161. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. P Natl Acad Sci USA 111:6092–6097CrossRefGoogle Scholar
  162. Mayer K, Martis M, Hedley P, Simková H, Liu H, Morris J, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant cell 23:1249–1263PubMedPubMedCentralCrossRefGoogle Scholar
  163. McKim SM, Stenvik G-E, Butenko MA, Kristiansen W, Cho SK et al (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in arabidopsis. Development 135:1537–1546PubMedCrossRefGoogle Scholar
  164. McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: control of meristem identity in maize. Trends Plant Sci 5:61–66Google Scholar
  165. Mizuno N, Nitta M, Sato K, Nasuda S (2012) A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet Sys 87:357–367CrossRefGoogle Scholar
  166. Muller KJ, Romano N, Gerstner O, Garcia-Marotot F, Pozzi C et al (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730PubMedCrossRefGoogle Scholar
  167. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495Google Scholar
  168. Nečas J (1963) Inheritance of development of lateral florets in spikelets of barley spike. Biol Plant 5:89–99CrossRefGoogle Scholar
  169. Osnato M, Stile MR, Wang Y, Meynard D, Curiale S et al (2010) Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. Plant Physiol 154:1616–1632PubMedPubMedCentralCrossRefGoogle Scholar
  170. Pankin A, Campoli C, Dong X, Kilian B, Sharma R et al (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics 198:383–396PubMedPubMedCentralCrossRefGoogle Scholar
  171. Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101PubMedCrossRefGoogle Scholar
  172. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539Google Scholar
  173. Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P et al (2015) The genetic basis of composite spike form in barley and ‘miracle-wheat’. Genetics 201:155–165PubMedPubMedCentralCrossRefGoogle Scholar
  174. Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456Google Scholar
  175. Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S et al (2000) Genetics of mutations affecting the development of a barley floral bract. Genetics 154:1335–1346PubMedPubMedCentralGoogle Scholar
  176. Prasad K, Sriram P, Kumar SC, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290PubMedCrossRefGoogle Scholar
  177. Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928PubMedCrossRefGoogle Scholar
  178. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172PubMedCrossRefGoogle Scholar
  179. Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. P Natl Acad Sci USA 105:3646–3651CrossRefGoogle Scholar
  180. Rebetzke GJ, Bonnett DG, Reynolds MP (2016) Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot 67:2573–2586Google Scholar
  181. Remizowa MV, Rudall PJ, Choob VV, Sokoloff DD (2013) Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. Ann Bot 112:1553–1566PubMedCrossRefGoogle Scholar
  182. Richardson A, Rebocho AB, Coen E (2016) Ectopic KNOX expression affects plant development by altering tissue cell polarity and identity. Plant Cell 28:2079–2096PubMedCentralCrossRefPubMedGoogle Scholar
  183. Roig C, Pozzi C, Santi L, Müller J, Wang Y et al (2004) Genetics of barley hooded suppression. Genetics 167:439–448PubMedPubMedCentralCrossRefGoogle Scholar
  184. Rossini L, Okagaki R, Druka A, Muehlbauer GJ (2014) Shoot and inflorescence architecture. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 55–80Google Scholar
  185. Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S et al (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085PubMedCrossRefGoogle Scholar
  186. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527PubMedCrossRefPubMedCentralGoogle Scholar
  187. Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030PubMedCrossRefPubMedCentralGoogle Scholar
  188. Sakuma S, Salomon B, Komatsuda T (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52:738–749PubMedPubMedCentralCrossRefGoogle Scholar
  189. Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T et al (2017) Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiol 175:1720–1731PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221PubMedPubMedCentralCrossRefGoogle Scholar
  191. Sang T (2009) Genes and mutations underlying domestication transitions in grasses. Plant Physiol 149:63–70PubMedPubMedCentralCrossRefGoogle Scholar
  192. Santi L, Wang Y, Stile MR, Berendzen K, Wanke D et al (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34:813–826PubMedCrossRefGoogle Scholar
  193. Sawers RJH, Sheehan MJ, Brutnell TP (2005) Cereal phytochromes: targets of selection, targets for manipulation? Trends Plant Sci 10:138–143CrossRefGoogle Scholar
  194. Schaller CW, Qualset CO (1975) Isogenic analysis of productivity barley: interaction of genes affecting awn length and leaf-spotting. Crop Sci 15:378–382CrossRefGoogle Scholar
  195. Scholz F, Lehmann C (1961) Die gaterslebener mutanten der saatgerste in beziehung zur formenmannigfaltigkeit der art Hordeum vulgare L.s.l III. Die Kulturpflanze 9:230–272CrossRefGoogle Scholar
  196. Scotland RW, Wortley AH (2003) How many species of seed plants are there? Taxon 52:101–104CrossRefGoogle Scholar
  197. Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:273–278CrossRefGoogle Scholar
  198. Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M et al (2006) STY1 regulates auxin homeostasis and affects apical–basal patterning of the arabidopsis gynoecium. Plant J 47:112–123PubMedCrossRefGoogle Scholar
  199. Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci 17:91–101Google Scholar
  200. Stebbins GL, Yagil E (1966) The morphogenetic effects of the hooded gene in barley. I. The course of development in hooded and awned genotypes. Genetics 54:727–741PubMedPubMedCentralGoogle Scholar
  201. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney R, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefPubMedCentralGoogle Scholar
  202. Stenvik GE, Butenko MA, Urbanowicz BR, Rose JK, and Aalen RB (2006) Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18:1467–1476Google Scholar
  203. Sun Q, Zhou D-X (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. P Natl Acad Sci USA 105:13679–13684CrossRefGoogle Scholar
  204. Takahashi R (1955) The origin and evolution of cultivated barley. Academic 7Google Scholar
  205. Takahashi R (1987) Genetic features of East Asian barleys. In: Yasuda S, Konishi T (eds) Barley genetics V. Proceedings of fifth international barley genetics symposium, Okayama, 1986. Sanyo Press Co., Okayama, pp 7–20Google Scholar
  206. Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan R (ed) Barley genetics II. Proceedings of the second international barley genetics symposium. Washington State University Press, Pullman, WA, pp 388–408Google Scholar
  207. Takahashi R, Yamamoto J, Yasuda S, Itano Y (1953) Inheritance and linkage studies in barley. Ber Ohara Inst Landwirtschaftliche Forsch 10:29–53Google Scholar
  208. Takeda K, Saito W (1988) Inheritance of the percentage of missing lateral florets in ‘irregurale’ barley. Jap J Breed 38:72–80CrossRefGoogle Scholar
  209. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. P Natl Acad Sci USA 105:4062–4067CrossRefGoogle Scholar
  210. Taketa S, Yuo T, Sakurai Y, Miyake S, Ichii M (2011) Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breed Sci 61:80–85CrossRefGoogle Scholar
  211. Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485PubMedCrossRefPubMedCentralGoogle Scholar
  212. Tanto Hadado T, Rau D, Bitocchi E, Papa R (2010) Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biol 10:121PubMedPubMedCentralCrossRefGoogle Scholar
  213. Teichmann T, Muhr M (2015) Shaping plant architecture. Front Plant Sci 6Google Scholar
  214. Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A et al (2017) Leaf primordium size specifies leaf width and vein number among row-type classes in barley. Plant J 91:601–612PubMedCrossRefPubMedCentralGoogle Scholar
  215. Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo AM et al (2014) QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica 197:73–86CrossRefGoogle Scholar
  216. Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES et al (2007) Short vegetative phase-Like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235PubMedPubMedCentralCrossRefGoogle Scholar
  217. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The Pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefPubMedCentralGoogle Scholar
  218. van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A et al (2017) Six-rowed spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174:2397–2408PubMedPubMedCentralCrossRefGoogle Scholar
  219. Varshney R, Marcel T, Ramsay L, Russell J, Röder M, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103Google Scholar
  220. Vegetti AA, Anton AM (1995) Some evolution trends in the inflorescence of Poaceae. Flora 190:225–228Google Scholar
  221. von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1995) Systematic and ecogeographical studies on crop genepools; an ecogeographical study of the genus Hordeum. International plant genetic resources institute (IPGRI), Rome, ItalyGoogle Scholar
  222. von Korff M, Campoli C (2014) Genetic control of reproductive development in temperate cereals. In: Fornara F (ed) Advances in botanical research. Academic Press, London, UK, pp 131–152Google Scholar
  223. von Korff M, Grando S, Del Greco A, This D, Baum M et al (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669CrossRefGoogle Scholar
  224. von Ubisch G (1915) Analyse eines falles von bastardatavismus und faktoren-koppelung bei gerste. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 14:226–237Google Scholar
  225. Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78Google Scholar
  226. Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527PubMedCrossRefPubMedCentralGoogle Scholar
  227. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedCrossRefPubMedCentralGoogle Scholar
  228. Wendt T, Holme I, Dockter C, Preuß A, Thomas W et al (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11:e0168924PubMedPubMedCentralCrossRefGoogle Scholar
  229. Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedPubMedCentralCrossRefGoogle Scholar
  230. Whipple CJ (2017) Grass inflorescence architecture and evolution: the origin of novel signaling centers. New Phytol 216:367–372Google Scholar
  231. Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ (2007) Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. P Natl Acad Sci USA 104:1081–1086CrossRefGoogle Scholar
  232. Whipple CJ, Hall DH, DeBlasio S, Taguchi-Shiobara F, Schmidt RJ et al (2010) A conserved mechanism of bract suppression in the grass family. Plant Cell 22:565–578PubMedPubMedCentralCrossRefGoogle Scholar
  233. Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D et al (2011) grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. P Natl Acad Sci USA 108:E506–E512CrossRefGoogle Scholar
  234. Xu Y, Jia Q, Zhou G, Zhang X-Q, Angessa T, Broughton S, Yan G, Chang W, Li C (2017) Characterisation of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11Google Scholar
  235. Yagil E, Stebbins GL (1969) The morphogenetic effects of the hooded gene in barley ii. Cytological and environmental factors affecting gene expression. Genetics 62:307–319PubMedPubMedCentralGoogle Scholar
  236. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T et al (2003) Positional cloning of the wheat vernalization gene VRN1. P Natl Acad Sci USA 100:6263–6268CrossRefGoogle Scholar
  237. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W et al (2004) The Wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedPubMedCentralCrossRefGoogle Scholar
  238. Yan L, Fu D, Li C, Blechl A, Tranquilli G et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. P Natl Acad Sci USA 103:19581–19586CrossRefGoogle Scholar
  239. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62:4719–4730PubMedCrossRefGoogle Scholar
  240. Youssef HM, Koppolu R, Schnurbusch T (2012) Re-sequencing of vrs1 and int-c loci shows that labile barleys (Hordeum vulgare convar. labile) have a six-rowed genetic background. Genet Resour Crop Ev 59:1319–1328CrossRefGoogle Scholar
  241. Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T (2017a) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 49:157–161PubMedCrossRefGoogle Scholar
  242. Youssef HM, Mascher M, Ayoub MA, Stein N, Kilian B et al (2017b) Natural diversity of inflorescence architecture traces cryptic domestication genes in barley (Hordeum vulgare L.). Genet Resour Crop Ev 64:843–853CrossRefGoogle Scholar
  243. Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U et al (2012) A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot 63:5223–5232PubMedPubMedCentralCrossRefGoogle Scholar
  244. Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J et al (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. P Natl Acad Sci USA 109:4326–4331CrossRefGoogle Scholar
  245. Zhang Y, Zhang F, Li XH, Baller JA, Qi YP, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27PubMedCrossRefGoogle Scholar
  246. Zhou Y, Lu D, Li C, Luo J, Zhu B-F, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24:1034–1048Google Scholar
  247. Zhu Q-H, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L.). BMC Plant Biol 3:6PubMedPubMedCentralCrossRefGoogle Scholar
  248. Zohary D (1963) Proceedings of the first international barley genetics symposium, Wageningen: Barley genetics I. Pudoc Centre for Agricultural Publications and Documentations, Wageningen, The Netherlands, pp 27–31Google Scholar
  249. Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sarah M. McKim
    • 1
  • Ravi Koppolu
    • 2
  • Thorsten Schnurbusch
    • 2
    • 3
  1. 1.University of Dundee at the James Hutton InstituteDundeeUK
  2. 2.HEISENBERG-Research Group Plant ArchitectureLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
  3. 3.Faculty of Natural Sciences IIIInstitute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3Halle, 06108Germany

Personalised recommendations