Advertisement

Genomics Approaches to Mining Barley Germplasm Collections

  • Martin Mascher
  • Kazuhiro Sato
  • Brian Steffenson
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Barley has been diversified during the long process of evolution. The genetic diversity that was lost during domestication and crop improvement can be introduced from various collections with extant wild relatives of barley being a particularly rich source. Thousands of diverse accessions of cultivated and wild barley have been collected, preserved in ex situ collections, phenotyped for various traits, genotyped with molecular markers, and catalogued in databases. Such attributes make these collections readily accessible for germplasm mining. High-throughput sequencing methods for assessing intraspecific diversity have become available recently through the implementation of exome sequencing and genotype-by-sequencing in barley. These methods enable the systematic collection of molecular passport data of entire collections to inform genebank management decisions. They can also guide the selection of core collections for further in-depth studies linking phenotype and genotype. Finally, the joint analysis of genetic data and information on collection sites of accession can give insights about the population structure, dispersal, and evolutionary history of the crop.

Keywords

Genebank Genetic diversity Hordeum Landrace Wild barley 

References

  1. Ames N, Dreiseitl A, Steffenson BJ, Muehlbauer GJ (2015) Mining wild barley for powdery mildew resistance. Plant Pathol 64:1396–1406CrossRefGoogle Scholar
  2. Arora S, Steuernagel B, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Md Hatta M, Athiyannan N, Cheema J, Yu G, Kangara N, Ghosh S, Szabo LJ, Poland J, Bariana H, Jones JDG, Bentley AR, Ayliffe M, Olson E, Xu SS, Steffenson BJ, Lagudah E, Wulff BBH (2018) Resistance gene discovery and cloning by sequence capture and association genetics. bioRxiv.  https://doi.org/10.1101/248146
  3. Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R (2017) Development and evaluation of a Barley 50k iSelect SNP Array. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.01792CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berger GL, Liu S, Hall MD, Brooks WS, Chao S, Muehlbauer GJ et al (2013) Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping. Theor Appl Genet 126:693–710. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23139143
  5. Comadran J, Kilian Benjamin, Russell Joanne, Ramsay Luke, Stein Nils, Ganal Martin, Shaw Paul et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392CrossRefPubMedGoogle Scholar
  6. Cuesta-Marcos A, Szucs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP et al (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genom 11:707CrossRefGoogle Scholar
  7. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510.  https://doi.org/10.1038/nrg3012CrossRefPubMedGoogle Scholar
  8. Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–931CrossRefPubMedGoogle Scholar
  9. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082CrossRefGoogle Scholar
  10. Diwan N, McIntosh MS, Bauchan GR (1995) Methods of developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761CrossRefPubMedGoogle Scholar
  11. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379.  https://doi.org/10.1371/journal.pone.0019379CrossRefPubMedPubMedCentralGoogle Scholar
  12. Endresen DTF, Street K, Mackay M, Bari A, de Pauw E (2011) Predictive association between biotic stress traits and eco-geographic data for wheat and barley landraces. Crop Sci 51:2036–2055CrossRefGoogle Scholar
  13. Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilized subtropical fruit tree species. Ann Appl Biol 153:25–32Google Scholar
  14. Evans J, Kim J, Childs KL, Vaillancourt B, Crisovan E, Nandety A, Gerhardt DJ, Richmond TA, Jeddeloh JA, Kaeppler SM, Casler MD, Buell CR (2014) Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum. Plant J Cell Mol Biol 79(6):993–1008.  https://doi.org/10.1111/tpj.12601CrossRefGoogle Scholar
  15. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, 399 p. http://www.fao.org/docrep/013/i1500e/i1500e00.htm
  16. Fu YB, Horbach C (2012) Genetic diversity in a core subset of wild barley germplasm. Diversity 4:239–257CrossRefGoogle Scholar
  17. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117.  https://doi.org/10.1126/science.1177837CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gouesnard B (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94CrossRefPubMedGoogle Scholar
  19. Gutiérrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays. Plant Genome J 4:256CrossRefGoogle Scholar
  20. Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ et al (2010) Population structure and linkage disequilibrium in U.S. barley germplasm: implications for association mapping. Crop Sci 50:556–566CrossRefGoogle Scholar
  21. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527.  https://doi.org/10.1038/ng.2007.42CrossRefPubMedGoogle Scholar
  22. Huang X, Han B (2013) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol.  https://doi.org/10.1146/annurev-arplant-050213-035715CrossRefPubMedGoogle Scholar
  23. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967.  https://doi.org/10.1038/ng.695CrossRefPubMedGoogle Scholar
  24. International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716.  https://doi.org/10.1038/nature11543CrossRefGoogle Scholar
  25. Jakob SS, Rödder D, Engler JO, Shaaf S, Ozkan H, Blattner FR et al (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6:685–702CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Consortium I, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeoloe genomes. Genome Biol 16:48.  https://doi.org/10.1186/s13059-015-0606-4
  27. Knapp M, Hofreiter M (2010) Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes (Basel) 1(2):227–243.  https://doi.org/10.3390/genes1020227CrossRefGoogle Scholar
  28. Knüpffer H (2009) Triticeae genetic resources in ex situ Genebank Collections. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the triticeae. Springer, New York, pp 31–79Google Scholar
  29. Knüpffer H, van Hintum THJL (2003) Summarised diversity—the barley core collection. In: von Bothmer R, van Hintum TH, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, The Netherlands, pp 250–258Google Scholar
  30. Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914.  https://doi.org/10.1038/ncomms7914CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mackay MC, Street KS (2004) Focused identification of germplasm strategy—FIGS. In: Rebetzke GJ, Black CK, Panozzo JK (eds) Proceedings of the 54th Australian cereal chemistry conference and the 11th wheat breeders’ assembly. Royal Australian Chemical Institute, Melbourne, Australia, pp 138–141Google Scholar
  32. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KF, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013a) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J Cell Mol Biol 76(3):494–505.  https://doi.org/10.1111/tpj.12294CrossRefGoogle Scholar
  33. Mascher M, Wu S, Amand PS, Stein N, Poland J (2013b) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8(10):e76925.  https://doi.org/10.1371/journal.pone.0076925CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hubner S, Korol A, David M, Reiter E, Riehl S, Schreiber M, Vohr SH, Green RE, Dawson IK, Russell J, Kilian B, Muehlbauer GJ, Waugh R, Fahima T, Krause J, Weiss E, Stein N (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48(9):1089–1093.  https://doi.org/10.1038/ng.3611CrossRefPubMedGoogle Scholar
  35. Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S et al (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454CrossRefGoogle Scholar
  36. Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomic 16:290CrossRefGoogle Scholar
  37. McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Hamilton RS, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Agriculture: feeding the future. Nature 499(7456):23–24.  https://doi.org/10.1038/499023aCrossRefPubMedGoogle Scholar
  38. Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T et al (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9:e85761CrossRefPubMedPubMedCentralGoogle Scholar
  39. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013.  https://doi.org/10.1111/tpj.13515CrossRefPubMedGoogle Scholar
  40. Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high throughput SNP genotype data Theor. Appl. Genet. 120:1525–1534CrossRefGoogle Scholar
  41. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110(2):453–458.  https://doi.org/10.1073/pnas.1215985110CrossRefPubMedGoogle Scholar
  42. Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9:e94688CrossRefPubMedPubMedCentralGoogle Scholar
  43. Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L et al (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3:141–178. Available at: http://link.springer.com/10.1007/s12571-011-0126-3. Accessed 23 Mar 2014
  44. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276.  https://doi.org/10.1038/nature08250CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY et al (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203:1453–1467CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12(6):443–451.  https://doi.org/10.1038/nrg2986CrossRefPubMedPubMedCentralGoogle Scholar
  47. Oppermann M, Weise S, Dittmann C, Knupffer H (2015) GBIS: the information system of the German Genebank. Database (Oxford) 2015:bav021.  https://doi.org/10.1093/database/bav021
  48. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G et al (2012) Genome-wide association studies for agronomical traits in a world-wide spring barley collection. BMC Plant Biol 12:16CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pasam RK, Sharma R, Walther A, Özkan H, Graner A, Kilian B (2014) Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS ONE 9:e116164CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pauli D, Muehlbauer G, Smith K, Cooper B (2014) Association mapping of agronomic QTLs in US Spring barley breeding germplasm. Plant Genome 7.  https://doi.org/10.3835/plantgenome2013.11.0037
  51. Pillen K, Zacharias A, Leon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601CrossRefPubMedGoogle Scholar
  52. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5(3):92–102.  https://doi.org/10.3835/plantgenome2012.05.0005CrossRefGoogle Scholar
  53. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162(3):527–539.  https://doi.org/10.1016/j.cell.2015.07.002CrossRefPubMedGoogle Scholar
  55. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55.  https://doi.org/10.1186/gb-2013-14-6-r55CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661CrossRefPubMedGoogle Scholar
  57. Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256CrossRefPubMedPubMedCentralGoogle Scholar
  58. Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S (2016a) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030CrossRefPubMedGoogle Scholar
  59. Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid KJ, Kilian B, Muehlbauer G, Stein N, Waugh R (2016b) Adaptation of barley to different environments revealed in the exomes of a range-wide collection of landraces and wild relatives. Nat GeneticsGoogle Scholar
  60. Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S et al (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:1–9CrossRefGoogle Scholar
  61. Sallam AH, Tyagi P, Gina Brown-Guedira G, Muehlbauer GJ, Hulse A, Steffenson BJ (2017) Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp. spontaneum. G3 Genes Genomes Genet 7:3491–3507Google Scholar
  62. Sato K, Takeda K (2009) An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119:613–619CrossRefPubMedGoogle Scholar
  63. Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG et al (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schmalenbach I, Korber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106CrossRefPubMedGoogle Scholar
  65. Schnaithmann F, Kopahnke D, Pillen K (2014) A first step toward the development of a barley NAM population and its utilization to detect qtls conferring leaf rust seedling resistance. Theor Appl Genet 127:1513–1525CrossRefPubMedGoogle Scholar
  66. Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res 58:532–534CrossRefGoogle Scholar
  67. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105(10):4062–4067.  https://doi.org/10.1073/pnas.0711034105CrossRefPubMedGoogle Scholar
  68. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066CrossRefPubMedGoogle Scholar
  69. Tondelli A, Xu X, Moragues M et al (2013) Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome 6:0.  https://doi.org/10.3835/plantgenome2013.03.0007
  70. Ullrich SE (2011) Significance, adaptation, production and trade of barley. In: Steven E. Ullrich (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Ames, IA, pp 3–13Google Scholar
  71. von Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K (eds) Diversity in Barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, The Netherlands, pp 9–27Google Scholar
  72. von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745CrossRefGoogle Scholar
  73. Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant 8:1507–1519CrossRefPubMedGoogle Scholar
  74. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920.  https://doi.org/10.1073/pnas.0401076101CrossRefPubMedGoogle Scholar
  75. Wu D, Sato K, Ma JF (2015) Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol 208:817–829.  https://doi.org/10.1111/nph.13512CrossRefPubMedGoogle Scholar
  76. Yang J, Jiang H, Yeh CT, Yu J, Jeddeloh JA, Nettleton D, Schnable PS (2015) Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. The Plant journal: for cell and molecular biology 84(3):587–596.  https://doi.org/10.1111/tpj.13029CrossRefGoogle Scholar
  77. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2206100&tool=pmcentrez&rendertype=abstract. Accessed 10 May 2015
  78. Zhou H, Steffenson B (2013a) Genome-wide association mapping reveals genetic architecture of durable spot blotch resistance in US barley breeding germplasm. Mol Breed 32:139–154CrossRefGoogle Scholar
  79. Zhou H, Steffenson BJ (2013b) Association mapping of Septoria speckled leaf blotch resistance in U.S. barley breeding germplasm. Phytopathology 103:600–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23342987
  80. Zhou H, Muehlbauer G, Steffenson B (2012) Population structure and linkage disequilibrium in elite barley breeding germplasm from the United States. J Zhejiang Univ Sci B 13:438–451. Available at: http://www.springerlink.com/index/10.1631/jzus.B1200003. Accessed 23 Mar 2014
  81. Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127:1293–1304CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zohary D, Hoph M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. Oxford University Press Inc., New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Martin Mascher
    • 1
  • Kazuhiro Sato
    • 2
  • Brian Steffenson
    • 3
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
  2. 2.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
  3. 3.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations