The Contribution of Anti-oxidant and Anti-inflammatory Functions of Adenosine A1 Receptor in Mediating Otoprotection

  • Sandeep ShethEmail author
  • Debashree Mukherjea
  • Leonard P. Rybak
  • Vickram Ramkumar


The production of high levels of adenosine into the extracellular fluid during enhanced metabolic activity or ischemic conditions confers cytoprotection to the affected tissue. This action is mediated by adenosine receptors (ARs) which are ubiquitously expressed on the surface of cells which respond to the elevation in levels of adenosine in the extracellular fluid. While endogenous adenosine released to the extracellular fluid could confer protection under normal physiological condition, exogenously administered adenosine analogs are required to boost the protective capacity of these receptors under stress conditions. This chapter provides a summary of the adenosine/AR system in the cochlea and shows that the adenosine A1 receptor (A1AR) could protect against hearing loss by inhibiting cochlear oxidative stress, inflammation and apoptosis of cochlear cells.


Adenosine A1 receptor Hearing loss Oxidative stress Cochlear inflammation Otoprotection 



The authors would like to acknowledge NIH grant support: NCI RO1 CA166907 to VR, NIDCD RO1-DC 002396 to LPR and RO3 DC011621 to DM, and a grant from the American Hearing Research Foundation to SS.


  1. Adair TH. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol. 2005;289(2):R283–96.CrossRefPubMedGoogle Scholar
  2. Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279(44):46065–72.CrossRefPubMedGoogle Scholar
  3. Borse V, Al Aameri RFH, Sheehan K, Sheth S, Kaur T, Mukherjea D, Tupal S, Lowy M, Ghosh S, Dhukhwa A, Bhatta P, Rybak LP, Ramkumar V. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis. 2017;8(7):e2921.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen GD, Fechter LD. The relationship between noise-induced hearing loss and hair cell loss in rats. Hear Res. 2003;177(1–2):81–90.CrossRefPubMedGoogle Scholar
  5. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314(5806):1792–5.CrossRefPubMedGoogle Scholar
  6. Choung YH, Taura A, Pak K, Choi SJ, Masuda M, Ryan AF. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience. 2009;161(1):214–26.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Claire LS, Stothart G, McKenna L, Rogers PJ. Caffeine abstinence: an ineffective and potentially distressing tinnitus therapy. Int J Audiol. 2010;49(1):24–9.CrossRefPubMedGoogle Scholar
  8. Clerici WJ, DiMartino DL, Prasad MR. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear Res. 1995;84(1–2):30–40.CrossRefPubMedGoogle Scholar
  9. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986;78(3):760–70.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol. 1992;148(7):2201–6.PubMedGoogle Scholar
  11. Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, Leibovich SJ. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 2013;36(4):921–31.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Figueiredo RR, Rates MJ, Azevedo AA, Moreira RK, Penido Nde O. Effects of the reduction of caffeine consumption on tinnitus perception. Braz J Otorhinolaryngol. 2014;80(5):416–21.CrossRefPubMedGoogle Scholar
  13. Ford MS, Maggirwar SB, Rybak LP, Whitworth C, Ramkumar V. Expression and function of adenosine receptors in the chinchilla cochlea. Hear Res. 1997a;105(1–2):130–40.CrossRefPubMedGoogle Scholar
  14. Ford MS, Nie Z, Whitworth C, Rybak LP, Ramkumar V. Up-regulation of adenosine receptors in the cochlea by cisplatin. Hear Res. 1997b;111(1–2):143–52.CrossRefPubMedGoogle Scholar
  15. Fredholm BB. Adenosine receptors as drug targets. Exp Cell Res. 2010;316(8):1284–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83(4):575–83.CrossRefPubMedGoogle Scholar
  17. Haskó G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol 2013;4Google Scholar
  18. Haskó G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113(2):264–75.CrossRefPubMedGoogle Scholar
  19. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27(1):1–19.CrossRefGoogle Scholar
  20. Hight NG, McFadden SL, Henderson D, Burkard RF, Nicotera T. Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hear Res. 2003;179(1–2):21–32.CrossRefPubMedGoogle Scholar
  21. Hu BH, Zheng XY, McFadden SL, Kopke RD, Henderson D. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hear Res. 1997;113(1–2):198–206.CrossRefPubMedGoogle Scholar
  22. Ikeda K, Sunose H, Takasaka T. Effects of free radicals on the intracellular calcium concentration in the isolated outer hair cell of the guinea pig cochlea. Acta Otolaryngol. 1993;113(2):137–41.CrossRefPubMedGoogle Scholar
  23. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5(3):247–64.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jhaveri KA, Toth LA, Sekino Y, Ramkumar V. Nitric oxide serves as an endogenous regulator of neuronal adenosine A1 receptor expression. J Neurochem. 2006;99(1):42–53.CrossRefPubMedGoogle Scholar
  25. Jiang H, Talaska AE, Schacht J, Sha SH. Oxidative imbalance in the aging inner ear. Neurobiol Aging. 2007;28(10):1605–12.CrossRefPubMedGoogle Scholar
  26. Kaur T, Borse V, Sheth S, Sheehan K, Ghosh S, Tupal S, Jajoo S, Mukherjea D, Rybak LP, Ramkumar V. Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J Neurosci. 2016;36(14):3962–77.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011;2:e180.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaygusuz I, Oztürk A, Ustündağ B, Yalçin S. Role of free oxygen radicals in noise-related hearing impairment. Hear Res. 2001;162(1–2):43–7.CrossRefPubMedGoogle Scholar
  29. Khan AF, Thorne PR, Muñoz DJ, Wang CJ, Housley GD, Vlajkovic SM. Nucleoside transporter expression and adenosine uptake in the rat cochlea. Neuroreport. 2007;18(3):235–9.CrossRefPubMedGoogle Scholar
  30. Kobayashi S, Zimmermann H, Millhorn DE. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport. J Neurochem. 2000;74(2):621–32.CrossRefPubMedGoogle Scholar
  31. Kopke R, Allen KA, Henderson D, Hoffer M, Frenz D, Van de Water T. A radical demise. Toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci. 1999;884:171–91.CrossRefPubMedGoogle Scholar
  32. Kopke RD, Liu W, Gabaizadeh R, Jacono A, Feghali J, Spray D, Garcia P, Steinman H, Malgrange B, Ruben RJ, Rybak L, Van de Water TR. Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am J Otol. 1997;18(5):559–71.PubMedGoogle Scholar
  33. Lautermann J, McLaren J, Schacht J. Glutathione protection against gentamicin ototoxicity depends on nutritional status. Hear Res. 1995;86:15–24.CrossRefPubMedGoogle Scholar
  34. Lee JE, Nakagawa T, Kita T, Kim TS, Iguchi F, Endo T, Shiga A, Lee SH, Ito J. Mechanisms of apoptosis induced by cisplatin in marginal cells in mouse stria vascularis. ORL J Otorhinolaryngol Relat Spec. 2004a;66(3):111–8.CrossRefPubMedGoogle Scholar
  35. Lee JE, Nakagawa T, Kim TS, Endo T, Shiga A, Iguchi F, Lee SH, Ito J. Role of reactive radicals in degeneration of the auditory system of mice following cisplatin treatment. Acta Otolaryngol. 2004b;124(10):1131–5.CrossRefPubMedGoogle Scholar
  36. Merchant SN, Gopen Q. A human temporal bone study of acute bacterial meningogenic labyrinthitis. Am J Otol. 1996;17(3):375–85.PubMedGoogle Scholar
  37. Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA. A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther. 2003;100(1):31–48.CrossRefPubMedGoogle Scholar
  38. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mujica-Mota MA, Gasbarrino K, Rappaport JM, Shapiro RS, Daniel SJ. The effect of caffeine on hearing in a guinea pig model of acoustic trauma. Am J Otolaryngol. 2014;35(2):99–105.CrossRefPubMedGoogle Scholar
  40. Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP. Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal. 2010;13(5):589–98.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mukherjea D, Jajoo S, Sheehan K, Kaur T, Sheth S, Bunch J, Perro C, Rybak LP, Ramkumar V. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxid Redox Signal. 2011;14:999–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mukherjea D, Jajoo S, Whitworth C, Bunch JR, Turner JG, Rybak LP, Ramkumar V. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci. 2008;28(49):13056–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Muñoz DJ, Kendrick IS, Rassam M, Thorne PR. Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Otolaryngol. 2001;121(1):10–5.CrossRefPubMedGoogle Scholar
  44. Muñoz DJ, McFie C, Thorne PR. Modulation of cochlear blood flow by extracellular purines. Hear Res. 1999;127(1–2):55–61.CrossRefPubMedGoogle Scholar
  45. Nakai Y, Konishi K, Chang KC, Ohashi K, Morisaki N, Minowa Y, Morimoto A. Ototoxicity of the anticancer drug cisplatin. An experimental study. Acta Otolaryngol. 1982;93(1–6):227–32.CrossRefPubMedGoogle Scholar
  46. Nie Z, Mei Y, Ford M, Rybak L, Marcuzzi A, Ren H, Stiles GL, Ramkumar V. Oxidative stress increases A1 adenosine receptor expression by activating nuclear factor kappa B. Mol Pharmacol. 1998;53(4):663–9.CrossRefPubMedGoogle Scholar
  47. Paparella MM, Oda M, Hiraide F, Brady D. Pathology of sensorineural hearing loss in otitis media. Ann Otol Rhinol Laryngol. 1972;81(5):632–47.CrossRefPubMedGoogle Scholar
  48. Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res. 2004;188(1–2):47–56.CrossRefPubMedGoogle Scholar
  49. Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2(2):409–30.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rybak LP, Husain K, Morris C, Whitworth C, Somani S. Effect of protective agents against cisplatin ototoxicity. Am J Otol. 2000;21(4):513–20.PubMedGoogle Scholar
  51. Rybak LP, Mukherjea D, Jajoo S, Ramkumar V. Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J Exp Med. 2009;219(3):177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sheth S, Sheehan K, Lowy M, Borse B, Dhukhwa A, Al-aameri R, Mukherjea D, Rybak LP, Ramkumar V. The detrimental effects of caffeine consumption on hearing in the rat model of cisplatin ototoxicity. Assoc Res Otolaryngol (Abstract 597) 2017:398. Abstract retrieved from Abstract Archives in Association for Research in Otolaryngology database.Google Scholar
  53. Someya S, Xu J, Kondo K, Ding D, Salvi RJ, Yamasoba T, Rabinovitch PS, Weindruch R, Leeuwenburgh C, Tanokura M, Prolla TA. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A. 2009;106(46):19432–7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–44.CrossRefPubMedGoogle Scholar
  55. Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem. 2004;279(7):5811–20.CrossRefPubMedGoogle Scholar
  56. Vlajkovic SM, Abi S, Wang CJ, Housley GD, Thorne PR. Differential distribution of adenosine receptors in rat cochlea. Cell Tissue Res. 2007;328(3):461–71.CrossRefPubMedGoogle Scholar
  57. Vlajkovic SM, Ambepitiya K, Barclay M, Boison D, Housley GD, Thorne PR. Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss. Hear Res. 2017;345:43–51.CrossRefPubMedGoogle Scholar
  58. Vlajkovic SM, Guo CX, Telang R, Wong AC, Paramananthasivam V, Boison D, Housley GD, Thorne PR. Adenosine kinase inhibition in the cochlea delays the onset of age-related hearing loss. Exp Gerontol. 2011;46(11):905–14.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vlajkovic SM, Housley GD, Muñoz DJ, Robson SC, Sévigny J, Wang CJ, Thorne PR. Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Neuroscience. 2004;126(3):763–73.CrossRefPubMedGoogle Scholar
  60. Vlajkovic SM, Vinayagamoorthy A, Thorne PR, Robson SC, Wang CJ, Housley GD. Noise-induced up-regulation of NTPDase3 expression in the rat cochlea: Implications for auditory transmission and cochlear protection. Brain Res. 2006;1104(1):55–63.CrossRefPubMedGoogle Scholar
  61. Whitworth CA, Ramkumar V, Jones B, Tsukasaki N, Rybak LP. Protection against cisplatin ototoxicity by adenosine agonists. Biochem Pharmacol. 2004;67(9):1801–7.CrossRefPubMedGoogle Scholar
  62. Wong AC, Guo CX, Gupta R, Housley GD, Thorne PR, Vlajkovic SM. Post exposure administration of A(1) adenosine receptor agonists attenuates noise-induced hearing loss. Hear Res. 2010;260(1–2):81–8.CrossRefPubMedGoogle Scholar
  63. Wong AC, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci. 2015;21(7):58.Google Scholar
  64. Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A. Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol. 1995;252:504–8.CrossRefPubMedGoogle Scholar
  65. Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM. Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience. 2005;134(2):633–42.CrossRefPubMedGoogle Scholar
  66. Yamashita D, Jiang HY, Schacht J, Miller JM. Delayed production of free radicals following noise exposure. Brain Res. 2004;1019(1–2):201–9.CrossRefPubMedGoogle Scholar
  67. Yamasoba T, Nuttall AL, Harris C, Raphael Y, Miller JM. Role of glutathione in protection against noise-induced hearing loss. Brain Res. 1998;784:82–90.CrossRefPubMedGoogle Scholar
  68. Zhao HB, Yu N, Fleming CR. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A. 2005;102(51):18724–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sandeep Sheth
    • 1
    Email author
  • Debashree Mukherjea
    • 2
  • Leonard P. Rybak
    • 2
  • Vickram Ramkumar
    • 1
  1. 1.Department of PharmacologySouthern Illinois University School of MedicineSpringfieldUSA
  2. 2.Department of Surgery (Otolaryngology)Southern Illinois University School of MedicineSpringfieldUSA

Personalised recommendations