Corticotropin Releasing Factor Signaling in the Mammalian Cochlea: An Integrative Niche for Cochlear Homeostatic Balance Against Noise

  • Douglas E. VetterEmail author
  • Kathleen T. Yee


Beyond hair cells, the cochlea is composed of many cell types, and most of these cells do not directly participate in converting the acoustic signal into neural responses sent onward to the brain. Many of these “support” cells exist in niches that position them to monitor the state of the cochlea, and some are situated to signal such information to systems outside the cochlea. Others occupy positions such that they can invoke cellular responses limited to the cochlea without the need for “outside help”. Inflammatory responses that occur in the inner ear are perhaps one of the best examples of this surveillance/reporting role served by the vast majority of cells in the cochlea. Understanding a complex event such as inflammation will require that we draw on many different aspects of biology. Here we will cover a wide range of topics that are likely to be of significance for understanding cochlear inflammation. These include a cochlear-based CRF signaling system that mirrors the hypothalamic-pituitary-adrenal axis, central Master clocks and peripheral clocks resident in many tissues of the body, and the molecular biology of glucocorticoids and glucocorticoid receptors. While seemingly disparate, as discussion of these topics unfolds, it will become obvious that understanding these signaling systems will be important in generating a model of cochlear inflammatory processes. Here, we seek not to cover the well-worn ground of inflammation biology. Rather, we seek to cover the signaling systems that may be involved in setting up the inflammatory state, its modulation, and its final resolution.


Hearing loss Inflammation Cochlea CRF Immune system Corticosterone 



The work from the Vetter lab described in this chapter was funded by the NIH (R01DC006258, R21DC015124), and grants from The Richard and Susan Smith Family Foundation, and the Russo Family Award.


  1. Amir S, Lamont EW, Robinson B, Stewart J. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci. 2004;24:781–90.CrossRefPubMedGoogle Scholar
  2. Barnes PJ. Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol. 2010;120:76–85.CrossRefPubMedGoogle Scholar
  3. Basappa J, Graham CE, Turcan S, Vetter DE. The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic-pituitary-adrenal axis-equivalent signaling system. Hear Res. 2012;288:3–18.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basinou V, Park J-S, Cederroth CR, Canlon B. Circadian regulation of auditory function. Hear Res. 2017;347:47–55.CrossRefPubMedGoogle Scholar
  5. Bechtold DA, Gibbs JE, Loudon AS. Circadian dysfunction in disease. Trends Pharmacol Sci. 2010;31:191–8.CrossRefPubMedGoogle Scholar
  6. Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A. Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev. 2009;62:57–70.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102:4143–5.CrossRefPubMedGoogle Scholar
  8. Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W. Circadian clocks in mouse and human CD4+ T cells. PLoS One. 2011;6:e29801.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boorse GC, Denver RJ. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen Comp Endocrinol. 2006;146:9–18.CrossRefPubMedGoogle Scholar
  10. Borniger JC, Walker Ii WH, Gaudier-Diaz MM, Stegman CJ, Zhang N, Hollyfield JL, Nelson RJ, DeVries AC. Time-of-day dictates transcriptional inflammatory responses to cytotoxic chemotherapy. Sci Rep. 2017;7:41220.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burow A, Day HE, Campeau S. A detailed characterization of loud noise stress: intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res. 2005;1062:63–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation. 2014;11:173.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, Lee VM, Trojanowski JQ. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci. 2011;31:14436–49.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215:15–25.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Charmandari E, Chrousos GP, Lambrou GI, Pavlaki A, Koide H, Ng SS, Kino T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6:e25612.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crofford LJ, Sano H, Karalis K, Webster EL, Goldmuntz EA, Chrousos GP, Wilder RL. Local secretion of corticotropin-releasing hormone in the joints of Lewis rats with inflammatory arthritis. J Clin Invest. 1992;90:2555–64.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Curtis LM, Rarey KE. Effect of stress on cochlear glucocorticoid protein. II. Restraint. Hear Res. 1995;92:120–5.CrossRefPubMedGoogle Scholar
  19. Cutolo M, Straub RH. Circadian rhythms in arthritis: hormonal effects on the immune/inflammatory reaction. Autoimmun Rev. 2008;7:223–8.CrossRefPubMedGoogle Scholar
  20. De Souza EB, Van Loon GR. Stress-induced inhibition of the plasma corticosterone response to a subsequent stress in rats: a nonadrenocorticotropin-mediated mechanism. Endocrinology. 1982;110:23–33.CrossRefPubMedGoogle Scholar
  21. Dermitzaki E, Venihaki M, Tsatsanis C, Gravanis A, Avgoustinaki PD, Liapakis G, Margioris AN. The Multi-faceted Profile of Corticotropin-releasing Factor (CRF) Family of Neuropeptides and of their Receptors on the Paracrine/Local Regulation of the Inflammatory Response. Curr Mol Pharmacol. 2018;11(1):39–50Google Scholar
  22. Feng R, Li L, Yu H, Liu M, Zhao W. Melanopsin retinal ganglion cell loss and circadian dysfunction in Alzheimer’s disease (Review). Mol Med Rep. 2016;13:3397–400.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ferraz E, Borges MC, Terra-Filho J, Martinez JA, Vianna EO. Comparison of 4 AM and 4 PM bronchial responsiveness to hypertonic saline in asthma. Lung. 2006;184:341–6.CrossRefPubMedGoogle Scholar
  24. Francis HW, Rivas A, Lehar M, Ryugo DK. Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice. Brain Res. 2004;1016:182–94.CrossRefPubMedGoogle Scholar
  25. Franklin DJ, Lonsbury-Martin BL, Stagner BB, Martin GK. Altered susceptibility of 2f1-f2 acoustic-distortion products to the effects of repeated noise exposure in rabbits. Hear Res. 1991;53:185–208.CrossRefPubMedGoogle Scholar
  26. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575–83.CrossRefPubMedGoogle Scholar
  27. Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol. 2014;5:287.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110:577–86.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Graham CE, Vetter DE. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires corticotropin-releasing factor receptor 1 to establish normal hair cell innervation and cochlear sensitivity. J Neurosci. 2011;31:1267–78.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Graham CE, Basappa J, Vetter DE. A corticotropin-releasing factor system expressed in the cochlea modulates hearing sensitivity and protects against noise-induced hearing loss. Neurobiol Dis. 2010;38:246–58.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Graham CE, Basappa J, Turcan S, Vetter DE. The cochlear CRF signaling systems and their mechanisms of action in modulating cochlear sensitivity and protection against trauma. Mol Neurobiol. 2011;44:383–406.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hamermesh DS, Stancanelli E. Long workweeks and strange hours. ILR Rev. 2015;68:1007–18.CrossRefGoogle Scholar
  33. Hannah K, Ingeborg D, Leen M, Annelies B, Birgit P, Freya S, Bart V. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults. Noise Health. 2014;16:108–15.CrossRefPubMedGoogle Scholar
  34. Hanstein R, Lu A, Wurst W, Holsboer F, Deussing JM, Clement AB, Behl C. Transgenic overexpression of corticotropin releasing hormone provides partial protection against neurodegeneration in an in vivo model of acute excitotoxic stress. Neuroscience. 2008;156:712–21.CrossRefPubMedGoogle Scholar
  35. Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489:180–94.CrossRefPubMedGoogle Scholar
  36. Karalis K, Sano H, Redwine J, Listwak S, Wilder RL, Chrousos GP. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science (New York, NY). 1991;254:421–3.CrossRefGoogle Scholar
  37. Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol. 1997;72:131–6.CrossRefPubMedGoogle Scholar
  38. Kavelaars A, Ballieux RE, Heijnen CJ. The role of IL-1 in the corticotropin-releasing factor and arginine- vasopressin-induced secretion of immunoreactive beta-endorphin by human peripheral blood mononuclear cells. J Immunol. 1989;142:2338–42.PubMedGoogle Scholar
  39. Kavelaars A, Berkenbosch F, Croiset G, Ballieux RE, Heijnen CJ. Induction of beta-endorphin secretion by lymphocytes after subcutaneous administration of corticotropin-releasing factor. Endocrinology. 1990;126:759–64.CrossRefPubMedGoogle Scholar
  40. Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B, Birnbaum MJ, Chao MV. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron. 2002;35:697–709.CrossRefPubMedGoogle Scholar
  41. Kirk EC, Smith DW. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. J Assoc Res Otolaryngol. 2003;4:445–65.CrossRefGoogle Scholar
  42. Kudielka BM, Schommer NC, Hellhammer DH, Kirschbaum C. Acute HPA axis responses, heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology. 2004;29:983–92.CrossRefPubMedGoogle Scholar
  43. Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26:2115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29:14077–85.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015;330(Pt B):191–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kunicka JE, Talle MA, Denhardt GH, Brown M, Prince LA, Goldstein G. Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol. 1993;149:39–49.CrossRefPubMedGoogle Scholar
  47. La JH, Sung TS, Kim HJ, Kim TW, Kang TM, Yang IS. Peripheral corticotropin releasing hormone mediates post-inflammatory visceral hypersensitivity in rats. World J Gastroenterol. 2008;14:731–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liberman MC. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol. 1991;65:123–32.CrossRefPubMedGoogle Scholar
  49. Liberman MC, Gao WY. Chronic cochlear de-efferentation and susceptibility to permanent acoustic injury. Hear Res. 1995;90:158–68.CrossRefPubMedGoogle Scholar
  50. Liberman LD, Liberman MC. Dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol. 2015;16:205–19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lin HW, Furman AC, Kujawa SG, Liberman MC. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol. 2011;12:605–16.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci. 2013;33:5542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mazurek B, Haupt H, Joachim R, Klapp BF, Stover T, Szczepek AJ. Stress induces transient auditory hypersensitivity in rats. Hear Res. 2010;259:55–63.CrossRefPubMedGoogle Scholar
  54. Meltser I, Canlon B. Protecting the auditory system with glucocorticoids. Hear Res. 2011;281:47–55.CrossRefPubMedGoogle Scholar
  55. Meltser I, Cederroth CR, Basinou V, Savelyev S, Lundkvist GS, Canlon B. TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol. 2014;24:658–63.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miyakita T, Hellstrom PA, Frimanson E, Axelsson A. Effect of low level acoustic stimulation on temporary threshold shift in young humans. Hear Res. 1992;60:149–55.CrossRefPubMedGoogle Scholar
  57. Nozu T, Okumura T. Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol. 2015;50:819–30.CrossRefPubMedGoogle Scholar
  58. Okada K, Yano M, Doki Y, Azama T, Iwanaga H, Miki H, Nakayama M, Miyata H, Takiguchi S, Fujiwara Y, Yasuda T, Ishida N, Monden M. Injection of LPS causes transient suppression of biological clock genes in rats. J Surg Res. 2008;145:5–12.CrossRefPubMedGoogle Scholar
  59. Oster H, Damerow S, Hut RA, Eichele G. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms. 2006a;21:350–61.CrossRefPubMedGoogle Scholar
  60. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006b;4:163–73.CrossRefPubMedGoogle Scholar
  61. Oster H, Challet E, Ott V, Arvat E, Ronald de Kloet E, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38:3–45.CrossRefPubMedGoogle Scholar
  62. Panda S. Circadian physiology of metabolism. Science (New York, NY). 2016;354:1008–15.CrossRefGoogle Scholar
  63. Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2001;8:492–503.CrossRefPubMedGoogle Scholar
  64. Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol. 1988a;60:549–68.CrossRefPubMedGoogle Scholar
  65. Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts. J Neurophysiol. 1988b;60:569–79.CrossRefPubMedGoogle Scholar
  66. Rajan R, Johnstone BM. Binaural acoustic stimulation exercises protective effects at the cochlea that mimic the effects of electrical stimulation of an auditory efferent pathway. Brain Res. 1988;459:241–55.CrossRefPubMedGoogle Scholar
  67. Rarey KE, Luttge WG. Presence of type I and type II/IB receptors for adrenocorticosteroid hormones in the inner ear. Hear Res. 1989;41:217–21.CrossRefPubMedGoogle Scholar
  68. Rarey KE, Curtis LM, ten Cate WJ. Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res. 1993;64:205–10.CrossRefPubMedGoogle Scholar
  69. Rarey KE, Gerhardt KJ, Curtis LM, ten Cate WJ. Effect of stress on cochlear glucocorticoid protein: acoustic stress. Hear Res. 1995;82:135–8.CrossRefPubMedGoogle Scholar
  70. Reich K. The concept of psoriasis as a systemic inflammation: implications for disease management. J Eur Acad Dermatol Venereol. 2012;26(Suppl 2):3–11.CrossRefPubMedGoogle Scholar
  71. Rivas Bejarano JJ, Valdecantos WC. Psoriasis as autoinflammatory disease. Dermatol Clin. 2013;31:445–60.CrossRefPubMedGoogle Scholar
  72. Rivier CL, Grigoriadis DE, Rivier JE. Role of corticotropin-releasing factor receptors type 1 and 2 in modulating the rat adrenocorticotropin response to stressors. Endocrinology. 2003;144:2396–403.CrossRefPubMedGoogle Scholar
  73. Roe SY, McGowan EM, Rothwell NJ. Evidence for the involvement of corticotrophin-releasing hormone in the pathogenesis of traumatic brain injury. Eur J Neurosci. 1998;10:553–9.CrossRefPubMedGoogle Scholar
  74. Schmiedt RA, Schulte BA. Physiologic and histopathologic changes in quiet- and noise-aged gerbil cochleas. In: Dancer AL, Henderson D, Salvi RJ, Hammernik RP, editors. Noise-induced hearing loss. St. Louis: Mosby; 1992. p. 246–58.Google Scholar
  75. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34:827–84.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sridhar TS, Liberman MC, Brown MC, Sewell WF. A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci. 1995;15:3667–78.CrossRefPubMedGoogle Scholar
  77. Straub RH, Cutolo M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 2007;56:399–408.CrossRefPubMedGoogle Scholar
  78. Subramaniam M, Henderson D, Campo P, Spongr V. The effect of ‘conditioning’ on hearing loss from a high frequency traumatic exposure. Hear Res. 1992;58:57–62.CrossRefPubMedGoogle Scholar
  79. Svec F. Glucocorticoid receptor regulation. Life Sci. 1985;36:2359–66.CrossRefPubMedGoogle Scholar
  80. Svec F, Rudis M. Glucocorticoids regulate the glucocorticoid receptor in the AtT-20 cell. J Biol Chem. 1981;256:5984–7.PubMedGoogle Scholar
  81. ten Cate WJ, Curtis LM, Rarey KE. Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues. Hear Res. 1992;60:199–204.CrossRefPubMedGoogle Scholar
  82. ten Cate WJ, Curtis LM, Small GM, Rarey KE. Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea. Laryngoscope. 1993;103:865–71.PubMedGoogle Scholar
  83. Taberner AM, Liberman MC. Response properties of single auditory nerve fibers in the mouse. J Neurophysiol. 2005;93:557–69.CrossRefPubMedGoogle Scholar
  84. Tagen M, Stiles L, Kalogeromitros D, Gregoriou S, Kempuraj D, Makris M, Donelan J, Vasiadi M, Staurianeas NG, Theoharides TC. Skin corticotropin-releasing hormone receptor expression in psoriasis. J Invest Dermatol. 2007;127:1789–91.CrossRefPubMedGoogle Scholar
  85. Tahera Y, Meltser I, Johansson P, Hansson AC, Canlon B. Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology. 2006a;147:4430–7.CrossRefPubMedGoogle Scholar
  86. Tahera Y, Meltser I, Johansson P, Bian Z, Stierna P, Hansson A, Canlon B. NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma. J Neurosci Res. 2006b;83:1066–76.CrossRefPubMedGoogle Scholar
  87. Tahera Y, Meltser I, Johansson P, Salman H, Canlon B. Sound conditioning protects hearing by activating the hypothalamic-pituitary-adrenal axis. Neurobiol Dis. 2007;25:189–97.CrossRefPubMedGoogle Scholar
  88. Takahashi S, Yokota S, Hara R, Kobayashi T, Akiyama M, Moriya T, Shibata S. Physical and inflammatory stressors elevate circadian clock gene mPer1 mRNA levels in the paraventricular nucleus of the mouse. Endocrinology. 2001;142:4910–7.CrossRefPubMedGoogle Scholar
  89. Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115–24.CrossRefPubMedGoogle Scholar
  90. Vetter DE, Li C, Zhao L, Contarino A, Liberman MC, Smith GW, Marchuk Y, Koob GF, Heinemann SF, Vale W, Lee K-F. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat Genet. 2002;31:363–9.CrossRefPubMedGoogle Scholar
  91. Wang Y, Liberman MC. Restraint stress and protection from acoustic injury in mice. Hear Res. 2002;165:96–102.CrossRefPubMedGoogle Scholar
  92. Webster EL, Elenkov IJ, Chrousos GP. Corticotropin-releasing hormone acts on immune cells to elicit pro-inflammatory responses. Mol Psychiatry. 1997a;2:345–6.CrossRefPubMedGoogle Scholar
  93. Webster EL, Elenkov IJ, Chrousos GP. The role of corticotropin-releasing hormone in neuroendocrine-immune interactions. Mol Psychiatry. 1997b;2:368–72.CrossRefPubMedGoogle Scholar
  94. Webster EL, Torpy DJ, Elenkov IJ, Chrousos GP. Corticotropin-releasing hormone and inflammation. Ann N Y Acad Sci. 1998;840:21–32.CrossRefPubMedGoogle Scholar
  95. Wlk M, Wang CC, Venihaki M, Liu J, Zhao D, Anton PM, Mykoniatis A, Pan A, Zacks J, Karalis K, Pothoulakis C. Corticotropin-releasing hormone antagonists possess anti-inflammatory effects in the mouse ileum. Gastroenterology. 2002;123:505–15.CrossRefPubMedGoogle Scholar
  96. Yamasoba T, Dolan DF, Miller JM. Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses. Hear Res. 1999;127:31–40.CrossRefPubMedGoogle Scholar
  97. Yang S, Cai Q, Vethanayagam RR, Wang J, Yang W, Hu BH. Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res. 2016;333:283–94.CrossRefPubMedGoogle Scholar
  98. Yao X, Buhi WC, Alvarez IM, Curtis LM, Rarey KE. De novo synthesis of glucocorticoid hormone regulated inner ear proteins in rats. Hear Res. 1995;86:183–8.CrossRefPubMedGoogle Scholar
  99. Zheng XY, Henderson D, McFadden SL, Hu BH. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss. Hear Res. 1997;104:191–203.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Department of Otolaryngology and Communicative SciencesUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations