Oxidative Stress and Hearing Loss

  • Samson JamesdanielEmail author


Oxidative stress is considered as a central factor in acquired hearing loss. This chapter provides an introduction to the fundamental concepts of oxidative stress as well as an overview of cochlear oxidative stress pathways activated by risk factors of auditory dysfunction. It also discusses the susceptibility of the inner ear to oxidative damage, the intracellular redox sensitive mechanisms that facilitate cytotoxicity, and the cochlear targets of oxidative stress. Special focus is given to cochlear oxidative stress induced by exposure to environmental factors, such as noise, heavy metals, and organic solvents, ototoxic drugs/agents, such as aminoglycosides, cisplatin, and radiation, and aging. Potential biomarkers of oxidative stress and the utility of targeting cochlear oxidative stress to mitigate acquired hearing loss are discussed. Finally, recent developments in this field, including therapeutic compounds and strategies employed to target different steps in the oxidative stress signaling pathways as well as potential challenges to these approaches are discussed.


Oxidative stress Free radicals Nitrative stress Ototoxicity Cisplatin Hearing loss 


  1. Anniko M, Wersall J. Damage to the stria vascularis in the guinea pig by acute atoxyl intoxication. Acta Otolaryngol. 1975;80:167–79.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279:46065–72.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Battaglia A, Pak K, Brors D, Bodmer D, Frangos JA, Ryan AF. Involvement of ras activation in toxic hair cell damage of the mammalian cochlea. Neuroscience. 2003;122:1025–35.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bencko V, Symon K. Test of environmental exposure to arsenic and hearing changes in exposed children. Environ Health Perspect. 1977;19:95–101.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berndtsson M, Hagg M, Panaretakis T, Havelka AM, Shoshan MC, Linder S. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int J Cancer. 2007;120:175–80.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bodmer D, Brors D, Bodmer M, Ryan AF. [Rescue of auditory hair cells from ototoxicity by CEP-11 004, an inhibitor of the JNK signaling pathway]. Laryngorhinootologie. 2002;81:853–6.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bottger EC, Schacht J. The mitochondrion: a perpetrator of acquired hearing loss. Hear Res. 2013;303:12–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Campbell KC, Rybak LP, Meech RP, Hughes L. D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res. 1996;102:90–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cappaert NL, Klis SF, Baretta AB, Muijser H, Smoorenburg GF. Ethyl benzene-induced ototoxicity in rats: a dose-dependent mid-frequency hearing loss. J Assoc Res Otolaryngol. 2000;1:292–9.PubMedPubMedCentralGoogle Scholar
  11. Ceriello A. Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int J Clin Pract Suppl. 2002;51–8.Google Scholar
  12. Chavko M, Prusaczyk WK, McCarron RM. Protection against blast-induced mortality in rats by hemin. J Trauma. 2008;65:1140–5; discussion 5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33(Suppl):S99–108.PubMedPubMedCentralGoogle Scholar
  14. Choung YH, Taura A, Pak K, Choi SJ, Masuda M, Ryan AF. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience. 2009;161:214–26.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Clerici WJ, DiMartino DL, Prasad MR. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear Res. 1995;84:30–40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Comroe JH Jr, Dripps RD, Dumke PR, Deming M. Oxygen toxicity. J Am Med Assoc. 1945;128:710–7.CrossRefGoogle Scholar
  17. Conlon BJ, Perry BP, Smith DW. Attenuation of neomycin ototoxicity by iron chelation. Laryngoscope. 1998;108:284–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Crofton KM, Lassiter TL, Rebert CS. Solvent-induced ototoxicity in rats: an atypical selective mid-frequency hearing deficit. Hear Res. 1994;80:25–30.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dehne N, Lautermann J, Petrat F, Rauen U, de Groot H. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol. 2001;174:27–34.PubMedCrossRefGoogle Scholar
  20. DeWoskin RS, Riviere JE. Cisplatin-induced loss of kidney copper and nephrotoxicity is ameliorated by single dose diethyldithiocarbamate, but not mesna. Toxicol Appl Pharmacol. 1992;112:182–9.PubMedCrossRefGoogle Scholar
  21. Dodson HC, Mohuiddin A. Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol. 2000;29:525–37.PubMedCrossRefGoogle Scholar
  22. Doolittle ND, Muldoon LL, Brummett RE, et al. Delayed sodium thiosulfate as an otoprotectant against carboplatin-induced hearing loss in patients with malignant brain tumors. Clin Cancer Res. 2001;7:493–500.Google Scholar
  23. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1:529–39.PubMedCrossRefGoogle Scholar
  24. Eshraghi AA, Wang J, Adil E, et al. Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res. 2007;226:168–77.PubMedCrossRefGoogle Scholar
  25. Esterberg R, Hailey DW, Rubel EW, Raible DW. ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci. 2014;34:9703–19.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feghali JG, Liu W, Van De Water TR. L-n-acetyl-cysteine protection against cisplatin-induced auditory neuronal and hair cell toxicity. Laryngoscope. 2001;111:1147–55.PubMedCrossRefGoogle Scholar
  27. Feng Z, Hu W, Marnett LJ, Tang MS. Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- and BPDE-induced killing and mutagenesis through inhibition of nucleotide excision repair. Mutat Res. 2006;601:125–36.PubMedCrossRefGoogle Scholar
  28. Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc. 1894;65:899–910.CrossRefGoogle Scholar
  29. Fetoni AR, Sergi B, Ferraresi A, Paludetti G, Troiani D. Protective effects of alpha-tocopherol and tiopronin against cisplatin-induced ototoxicity. Acta Otolaryngol. 2004;124:421–6.PubMedCrossRefGoogle Scholar
  30. Fetoni AR, Rolesi R, Paciello F, et al. Styrene enhances the noise induced oxidative stress in the cochlea and affects differently mechanosensory and supporting cells. Free Radic Biol Med. 2016;101:211–25.PubMedCrossRefGoogle Scholar
  31. Fridberger A, Flock A, Ulfendahl M, Flock B. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A. 1998;95:7127–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: a mechanism in common. Science. 1954;119:623–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gopinath SP, Valadka AB, Goodman JC, Robertson CS. Extracellular glutamate and aspartate in head injured patients. Acta Neurochir Suppl. 2000;76:437–8.PubMedGoogle Scholar
  34. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res. 1995;704:135–40.PubMedCrossRefGoogle Scholar
  36. Heinrich UR, Helling K, Sifferath M, et al. Gentamicin increases nitric oxide production and induces hearing loss in guinea pigs. Laryngoscope. 2008;118:1438–42.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27:1–19.CrossRefGoogle Scholar
  38. Hirose K, Hockenbery DM, Rubel EW. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res. 1997;104:1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hong SH, Park SK, Cho YS, et al. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig. Hear Res. 2006;211:46–53.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011;2011:937861.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jamesdaniel S, Ding D, Kermany MH, et al. Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res. 2008;7:3516–24.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jamesdaniel S, Hu B, Kermany MH, et al. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics. 2011;75:410–24.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jamesdaniel S, Coling D, Hinduja S, et al. Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem. 2012;287:18674–86.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jamesdaniel S, Rathinam R, Neumann WL. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity. Redox Biol. 2016;10:257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Janssen-Heininger YM, Mossman BT, Heintz NH, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008;45:1–17.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jiang H, Sha SH, Forge A, Schacht J. Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ. 2006;13:20–30.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jiang H, Talaska AE, Schacht J, Sha SH. Oxidative imbalance in the aging inner ear. Neurobiol Aging. 2007;28:1605–12.CrossRefPubMedGoogle Scholar
  48. Jones LG, Prins J, Park S, Walton JP, Luebke AE, Lurie DI. Lead exposure during development results in increased neurofilament phosphorylation, neuritic beading, and temporal processing deficits within the murine auditory brainstem. J Comp Neurol. 2008;506:1003–17.PubMedCrossRefGoogle Scholar
  49. Kaur T, Borse V, Sheth S, et al. Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J Neurosci. 2016;36:3962–77.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kawamoto K, Sha SH, Minoda R, et al. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther. 2004;9:173–81.PubMedCrossRefGoogle Scholar
  51. Kil J, Pierce C, Tran H, Gu R, Lynch ED. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res. 2007;226:44–51.PubMedCrossRefGoogle Scholar
  52. Kim CS, Shin SO. Ultrastructural changes in the cochlea of the guinea pig after fast neutron irradiation. Otolaryngol Head Neck Surg. 1994;110:419–27.PubMedCrossRefGoogle Scholar
  53. Kim SJ, Jeong HJ, Myung NY, et al. The protective mechanism of antioxidants in cadmium-induced ototoxicity in vitro and in vivo. Environ Health Perspect. 2008;116:854–62.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Korver KD, Rybak LP, Whitworth C, Campbell KM. Round window application of D-methionine provides complete cisplatin otoprotection. Otolaryngol Head Neck Surg. 2002;126:683–9.PubMedCrossRefGoogle Scholar
  55. Lasky RE, Maier MM, Snodgrass EB, Hecox KE, Laughlin NK. The effects of lead on otoacoustic emissions and auditory evoked potentials in monkeys. Neurotoxicol Teratol. 1995;17:633–44.PubMedCrossRefGoogle Scholar
  56. Lautermann J, McLaren J, Schacht J. Glutathione protection against gentamicin ototoxicity depends on nutritional status. Hear Res. 1995;86:15–24.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee JN, Kim SG, Lim JY, et al. 3-Aminotriazole protects from CoCl2-induced ototoxicity by inhibiting the generation of reactive oxygen species and proinflammatory cytokines in mice. Arch Toxicol. 2016;90:781–91.PubMedCrossRefGoogle Scholar
  58. Li G, Liu W, Frenz D. Cisplatin ototoxicity to the rat inner ear: a role for HMG1 and iNOS. Neurotoxicology. 2006;27:22–30.PubMedCrossRefGoogle Scholar
  59. Li P, Ding D, Salvi R, Roth JA. Cobalt-induced ototoxicity in rat postnatal cochlear organotypic cultures. Neurotox Res. 2015;28:209–21.PubMedCrossRefGoogle Scholar
  60. Liang GH, Jarlebark L, Ulfendahl M, Moore EJ. Mercury (Hg2+) suppression of potassium currents of outer hair cells. Neurotoxicol Teratol. 2003;25:349–59.PubMedCrossRefGoogle Scholar
  61. Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res. 1984;16:55–74.PubMedCrossRefGoogle Scholar
  62. Liu X, Zheng G, Wu Y, et al. Lead exposure results in hearing loss and disruption of the cochlear blood-labyrinth barrier and the protective role of iron supplement. Neurotoxicology. 2013;39:173–81.PubMedCrossRefGoogle Scholar
  63. Low WK, Sun L, Tan MG, Chua AW, Wang DY. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line. Acta Otolaryngol. 2008;128:440–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lynch ED, Gu R, Pierce C, Kil J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res. 2005;201:81–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol. 2005;567:505–21.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marcus DC, Thalmann R, Marcus NY. Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope. 1978;88:1825–35.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424:83–95.PubMedCrossRefPubMedCentralGoogle Scholar
  68. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.PubMedPubMedCentralGoogle Scholar
  69. McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging. 1999;20:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Montuschi P, Barnes PJ, Roberts LJ II. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 2004;18:1791–800.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Morata TC, Dunn DE, Sieber WK. Occupational exposure to noise and ototoxic organic solvents. Arch Environ Health. 1994;49:359–65.PubMedCrossRefPubMedCentralGoogle Scholar
  72. More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci. 2010;30:9500–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mujica-Mota MA, Ibrahim FF, Bezdjian A, Devic S, Daniel SJ. The effect of fractionated radiotherapy in sensorineural hearing loss: an animal model. Laryngoscope. 2014;124:E418–24.PubMedCrossRefGoogle Scholar
  74. Mukherjea D, Jajoo S, Whitworth C, et al. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci. 2008;28:13056–65.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mukherjea D, Ghosh S, Bhatta P, et al. Early investigational drugs for hearing loss. Expert Opin Investig Drugs. 2015;24:201–17.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Muthusamy S, Peng C, Ng JC. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells. Chemosphere. 2016;165:41–51.PubMedCrossRefGoogle Scholar
  77. Nuttall AL. Sound-induced cochlear ischemia/hypoxia as a mechanism of hearing loss. Noise Health. 1999;2:17–32.PubMedGoogle Scholar
  78. Ohinata Y, Miller JM, Altschuler RA, Schacht J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res. 2000;878:163–73.PubMedCrossRefGoogle Scholar
  79. Ohinata Y, Miller JM, Schacht J. Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res. 2003;966:265–73.PubMedCrossRefGoogle Scholar
  80. Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol. 1999;4:229–36.PubMedCrossRefGoogle Scholar
  81. Ozcaglar HU, Agirdir B, Dinc O, Turhan M, Kilincarslan S, Oner G. Effects of cadmium on the hearing system. Acta Otolaryngol. 2001;121:393–7.PubMedCrossRefGoogle Scholar
  82. Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2005;61:1393–402.PubMedCrossRefGoogle Scholar
  83. Pan JS, Hong MZ, Ren JL. Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009;15:1702–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem. 2001;47:1467–9.PubMedPubMedCentralGoogle Scholar
  85. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci. 2010;1201:183–8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pirvola U, Xing-Qun L, Virkkala J, et al. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci. 2000;20:43–50.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B. Oxidative stress in the cochlea: an update. Curr Med Chem. 2010;17:3591–604.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Priuska EM, Schacht J. Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol. 1995;50:1749–52.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Pujol R, Puel JL. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci. 1999;884:249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res. 2004;188:47–56.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rathinam R, Ghosh S, Neumann WL, Jamesdaniel S. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discov. 2015;1.Google Scholar
  92. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature. 2000;407:777–83.PubMedCrossRefGoogle Scholar
  93. Roth JA, Salvi R. Ototoxicity of divalent metals. Neurotox Res. 2016;30:268–82.PubMedCrossRefGoogle Scholar
  94. Rybak LP. Hearing: the effects of chemicals. Otolaryngol Head Neck Surg. 1992;106:677–86.PubMedCrossRefGoogle Scholar
  95. Rybak LP, Ravi R, Somani SM. Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity: antioxidant system. Fundam Appl Toxicol. 1995;26:293–300.PubMedCrossRefGoogle Scholar
  96. Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 2007;226:157–67.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rybak LP, Mukherjea D, Jajoo S, Kaur T, Ramkumar V. siRNA-mediated knock-down of NOX3: therapy for hearing loss? Cell Mol Life Sci. 2012;69:2429–34.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Samson J, Wiktorek-Smagur A, Politanski P, et al. Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine. Neuroscience. 2008;152:146–50.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Schmitt NC, Rubel EW, Nathanson NM. Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci. 2009;29:3843–51.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Seidman MD. Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope. 2000;110:727–38.PubMedCrossRefGoogle Scholar
  101. Seidman MD, Shivapuja BG, Quirk WS. The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg. 1993;109:1052–6.PubMedCrossRefGoogle Scholar
  102. Seidman MD, Khan MJ, Tang WX, Quirk WS. Influence of lecithin on mitochondrial DNA and age-related hearing loss. Otolaryngol Head Neck Surg. 2002;127:138–44.PubMedCrossRefGoogle Scholar
  103. Seidman MD, Ahmad N, Joshi D, Seidman J, Thawani S, Quirk WS. Age-related hearing loss and its association with reactive oxygen species and mitochondrial DNA damage. Acta Otolaryngol Suppl. 2004;16–24.CrossRefGoogle Scholar
  104. Sha SH, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity. Lab Invest. 1999;79:807–13.PubMedGoogle Scholar
  105. Sha SH, Taylor R, Forge A, Schacht J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res. 2001a;155:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sha SH, Zajic G, Epstein CJ, Schacht J. Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss. Audiol Neurootol. 2001b;6:117–23.PubMedCrossRefGoogle Scholar
  107. Shargorodsky J, Curhan SG, Henderson E, Eavey R, Curhan GC. Heavy metals exposure and hearing loss in US adolescents. Arch Otolaryngol Head Neck Surg. 2011;137:1183–9.PubMedCrossRefGoogle Scholar
  108. Sharma KK, Milligan JR, Bernhard WA. Multiplicity of DNA single-strand breaks produced in pUC18 exposed to the direct effects of ionizing radiation. Radiat Res. 2008;170:156–62.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shi X, Nuttall AL. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res. 2003;967:1–10.PubMedCrossRefGoogle Scholar
  110. Shin YS, Hwang HS, Kang SU, Chang JW, Oh YT, Kim CH. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. Neurotoxicology. 2014;40:111–22.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, et al. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occup Environ Med. 2003;45:15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Smith DI, Lawrence M, Hawkins JE Jr. Effects of noise and quinine on the vessels of the stria vascularis: an image analysis study. Am J Otolaryngol. 1985;6:280–9.PubMedCrossRefGoogle Scholar
  113. Someya S, Xu J, Kondo K, et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A. 2009;106:19432–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Song BB, Sha SH, Schacht J. Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. Free Radic Biol Med. 1998;25:189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sullivan MJ, Rarey KE, Conolly RB. Ototoxicity of toluene in rats. Neurotoxicol Teratol. 1988;10:525–30.PubMedCrossRefGoogle Scholar
  116. Thomas AJ, Hailey DW, Stawicki TM, et al. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci. 2013;33:4405–14.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tian CJ, Kim SW, Kim YJ, et al. Red ginseng protects against gentamicin-induced balance dysfunction and hearing loss in rats through antiapoptotic functions of ginsenoside Rb1. Food Chem Toxicol. 2013;60:369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tokgoz B, Ucar C, Kocyigit I, et al. Protective effect of N-acetylcysteine from drug-induced ototoxicity in uraemic patients with CAPD peritonitis. Nephrol Dial Transplant. 2011;26:4073–8.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Vaziri ND, Khan M. Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead-induced hypertension. Clin Exp Pharmacol Physiol. 2007;34:920–5.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Vlajkovic SM, Lin SC, Wong AC, Wackrow B, Thorne PR. Noise-induced changes in expression levels of NADPH oxidases in the cochlea. Hear Res. 2013;304:145–52.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003;23:8596–607.CrossRefPubMedGoogle Scholar
  122. Warchol ME. Cellular mechanisms of aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg. 2010;18:454–8.PubMedCrossRefGoogle Scholar
  123. Wassick KH, Yonovitz A. Methyl mercury ototoxicity in mice determined by auditory brainstem responses. Acta Otolaryngol. 1985;99:35–45.PubMedCrossRefGoogle Scholar
  124. Watanabe K, Hess A, Michel O, Yagi T. Nitric oxide synthase inhibitor reduces the apoptotic change in the cisplatin-treated cochlea of guinea pigs. Anticancer Drugs. 2000;11:731–5.PubMedCrossRefGoogle Scholar
  125. Watanabe K, Inai S, Jinnouchi K, et al. Nuclear-factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res. 2002;22:4081–5.PubMedPubMedCentralGoogle Scholar
  126. Winther FO. Early degenerative changes in the inner ear sensory cells of the guinea pig following local x-ray irradiation. A preliminary report. Acta Otolaryngol. 1969;67:262–8.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wimmer C, Mees K, Stumpf P, Welsch U, Reichel O, Suckfüll M. Round window application of D-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growth factor-2 in cisplatin-induced ototoxicity. Otol Neurotol. 2004;25:33–40.CrossRefGoogle Scholar
  128. Wong AC, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci. 2015;7:58.PubMedPubMedCentralGoogle Scholar
  129. Xiong M, He Q, Lai H, Wang J. Oxidative stress in spiral ganglion cells of pigmented and albino guinea pigs exposed to impulse noise. Acta Otolaryngol. 2011;131:914–20.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yamamura K, Terayama K, Yamamoto N, Kohyama A, Kishi R. Effects of acute lead acetate exposure on adult guinea pigs: electrophysiological study of the inner ear. Fundam Appl Toxicol. 1989;13:509–15.PubMedCrossRefGoogle Scholar
  131. Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A. Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol. 1995;252:504–8.CrossRefPubMedGoogle Scholar
  132. Yamashita D, Jiang HY, Schacht J, Miller JM. Delayed production of free radicals following noise exposure. Brain Res. 2004;1019:201–9.CrossRefPubMedGoogle Scholar
  133. Yuan H, Wang X, Hill K, et al. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal. 2015;22:1308–24.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhang GX, Lu XM, Kimura S, Nishiyama A. Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res. 2007;76:204–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Environmental Health SciencesWayne State UniversityDetroitUSA

Personalised recommendations