Advertisement

Three Decades of Subterranean Acoustic Communication Studies

  • Cristian Schleich
  • Gabriel Francescoli
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 67)

Abstract

The subterranean environment has strongly influenced the evolution of the sensory biology of subterranean rodents. While dark and monotonous tunnels have led to reductions in the visual capabilities of some species, other senses appear to be highly developed in contrast. Among them, the emission of acoustic and seismic signals plays a major role in communication and alertness of subterranean mammals. In this chapter, the ecological and evolutionary conditions that influence the characteristics of vibrational communication in subterranean rodents are reviewed. First, the characteristics of rodents’ burrows and how they dictate the methods used to study subterranean communication are discussed. Second, the properties and roles of vocalizations and seismic signals in subterranean species are examined, including the main hypotheses about the evolution of these signals. Third, what is understood about social and vocal complexity in subterranean rodents is summarized and the similarities and differences in the vocal repertoires of social and solitary groups are analyzed. The chapter ends with a short summary and a consideration of future challenges in the field of subterranean acoustic communication in rodents.

Keywords

Bathyergids Burrow acoustics Ctenomyids Geomyids Seismic signals Sociality Sound transmission Spalacines Rodent vocalizations Vocal complexity 

Notes

Compliance with Ethics Requirements

Cristian E. Schleich declares that he has no conflict of interest.

Gabriel Francescoli declares that he has no conflict of interest.

References

  1. Amaya, J. P. (2017). Interacciones acústicas de una especie de Ctenomys de la provincia de La Rioja. Ph. D. dissertation. Facultad Ciencias Naturales y Museo. La Plata, Argentina.Google Scholar
  2. Amaya, J. P., Areta, J. I., Valentinuzzi, V. S., & Zufiaurre, E. (2016). Form and function of long-range vocalizations in a Neotropical fossorial rodent: The Anillaco tuco-tuco (Ctenomys sp.). PeerJ, 4, e2559.  https://doi.org/10.7717/peerj.2559 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bednářová, R., Hrouzková-Knotková, E., Burda, H., Sedláček, F., & Sumbera, R. (2013). Vocalizations of the giant mole rat (Fukomys mechowii), a subterranean rodent with the richest vocal repertoire. Bioacoustics, 22, 87–107.CrossRefGoogle Scholar
  4. Begall, S., & Gallardo, M. H. (2000). Spalacopus cyanus (Rodentia: Octodontidae): An extremist in tunnel constructing and food storing among subterranean mammals. Journal of Zoology London, 251, 53–60.CrossRefGoogle Scholar
  5. Begall, S., Burda, H., & Schleich, C. (2007a). Subterranean rodents: News from underground. Berlin: Springer Science+Business Media.CrossRefGoogle Scholar
  6. Begall, S., Lange, S., Schleich, C., & Burda, H. (2007b). Acoustics, audition and auditory system. In S. Begall, H. Burda, & C. Schleich (Eds.) Subterranean rodents: News from underground (pp. 97–111). Berlin: Springer Science+Business Media.CrossRefGoogle Scholar
  7. Bennett, N. C., & Jarvis, J. U. M. (1988). The social structure and reproductive biology of colonies of the mole rat Cryptomys damarensis (Rodentia, Bathyergidae). Journal of Mammalogy, 69, 293–302.CrossRefGoogle Scholar
  8. Bennett, N. C., Jarvis, J. U. M., & Cotterill, F. P. D. (1994). The colony structure and reproductive biology of the afrotropical Mashona mole rat, Cryptomys darlingi. Journal of Zoology, 234, 477–487.CrossRefGoogle Scholar
  9. Blumstein, D. T. (2003). Social complexity but not the acoustic environment is responsible for the evolution of complex alarm communication. In R. Ramousse, D. Allainé, & M. Le Berre (Eds.), Adaptive strategies and diversity in marmots (pp. 31–38). Montreux, Switzerland: International Network on Marmots.Google Scholar
  10. Blumstein, D. T., & Armitage, K. B. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. American Naturalist, 150, 179–200.CrossRefPubMedGoogle Scholar
  11. Blumstein, D. T, Mennill, D. J., Clemins, P., Girod, L., et al. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758–767.CrossRefGoogle Scholar
  12. Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal communication. Sunderland, MA: Sinauer.Google Scholar
  13. Brett, R. A. (1991). The population structure of naked mole rat colonies. In P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander (Eds.), The biology of the naked mole rat (pp. 97–136). Princeton: Princeton University Press.Google Scholar
  14. Burda, H., Bruns, V., & Müller, M. (1990a). Sensory adaptations in subterranean mammals. In E. Nevo & O. A. Reig (Eds.), Evolution of subterranean mammals at the organismal and molecular levels (pp. 269–293). New York: Wiley-Liss.Google Scholar
  15. Burda, H., Marhold, S., Westenberger, T., Wiltschko, R., & Wiltschko, W. (1990b). Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus, Bathyergidae. Experientia, 46, 528–530.CrossRefPubMedGoogle Scholar
  16. Burda, H., Beiles, A., Marhold, S., Simson, S., et al. (1991). Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: Experiments, patterns and memory. Israel Journal of Zoology, 37, 182–183.Google Scholar
  17. Burda, H., Honeycutt, R. L., Begall, S., Locker-Grütjen, O., & Scharff, A. (2000). Are naked and common mole rats eusocial and if so, why? Behavioral Ecology and Sociobiology, 47, 293–303.CrossRefGoogle Scholar
  18. Burda, H., Šumbera, R., & Begall, S. (2007). Microclimate in burrows of subterranean rodents. In S. Begall, H. Burda, & C. Schleich (Eds.), Subterranean rodents: News from underground (pp. 21–34). Berlin: Springer Science+Business Media.CrossRefGoogle Scholar
  19. Busch, C., Antinuchi, C. D., delValle, J. C., Kittlein, M. J., et al. (2000). Population ecology of subterranean rodents. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground (pp. 183–226). Chicago: University of Chicago Press.Google Scholar
  20. Calisi, R. M., & Bentley, G. E. (2009). Lab and field experiments: Are they the same animal? Hormones and Behavior, 56, 1–10.CrossRefPubMedGoogle Scholar
  21. Capranica, R. R., Moffat, J., & Nevo, E. (1974). Vocal repertoire of a subterranean rodent (Spalax). The Journal of the Acoustical Society of America, 55(2), 481. (Abstract)CrossRefGoogle Scholar
  22. Cooper, H. M., Herbin, M., & Nevo, E. (1993). Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature, 361, 156–159.CrossRefPubMedGoogle Scholar
  23. Credner, S., Burda, H., & Ludescher, F. (1997). Acoustic communication underground: Vocalization characteristics in subterranean social mole rats (Cryptomys sp., Bathyergidae). Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 180, 245–255.CrossRefPubMedGoogle Scholar
  24. del Valle, J. C., Lohfelt, M. I., Comparatore, V. M., Cid, M. S., & Busch, C. (2001). Feeding selectivity and food preference of Ctenomys talarum (tuco-tuco). Mammalian Biology, 66, 165–173.Google Scholar
  25. Devries, M. S., & Sikes, R. S. (2008). Vocalisation of a North American subterranean rodent Geomys breviceps. Bioacoustics, 18(1), 1–15.CrossRefGoogle Scholar
  26. Dvořáková, V., Hrouzková, E., & Šumbera, R. (2016). Vocal repertoire of the Mashona mole rat (Fukomys darlingi) and how it compares with other mole rats. Bioacoustics, 25, 253–266.CrossRefGoogle Scholar
  27. Faulkes, C. G., & Bennett, N. C. (2013). Plasticity and constraints on social evolution in African mole-rats: Ultimate and proximate factors. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120347.CrossRefGoogle Scholar
  28. Fernandes, F. A., Fernández-Stolz, G. P., Lopes, C. M., & Freitas, T. R. O. (2007). The conservation status of the tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae) in southern Brazil. Brazilian Journal of Biology, 67(4), 839–847.CrossRefGoogle Scholar
  29. Francescoli, G. (1999). A preliminary report on the acoustic communication in Uruguayan Ctenomys (Rodentia, Octodontidae): Basic sound types. Bioacoustics, 10, 203–218.CrossRefGoogle Scholar
  30. Francescoli, G. (2001). Vocal signals from Ctenomys pearsoni pups. Acta Theriologica, 46, 327–330.Google Scholar
  31. Francescoli, G. (2002). Geographic variation in vocal signals of Ctenomys pearsoni. Acta Theriologica, 47, 35–44.CrossRefGoogle Scholar
  32. Francescoli, G. (2011). Tuco-tucos’ vocalization output varies seasonally (Ctenomys pearsoni; Rodentia, Ctenomyidae): Implications for reproductive signaling. Acta Ethologica, 14(1), 1–6.CrossRefGoogle Scholar
  33. Freeberg, T. M., Dunbar, R. I. M., & Ord, T. J. (2012). Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1785–1801.CrossRefGoogle Scholar
  34. Gannon, W. L., & Sikes, R. S. (2007). Guidelines of the american society of mammalogists for the use of wild mammals in research. Journal of Mammalogy, 88(3), 809–823.Google Scholar
  35. Godfray, H. C. J. (1995). Evolutionary theory of parent-offspring conflict. Nature, 376, 133–138.CrossRefPubMedGoogle Scholar
  36. Heth, G., Frankenberg, E., & Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42(11), 1287–1289.CrossRefPubMedGoogle Scholar
  37. Heth, G., Frankenberg, E., Raz, A., & Nevo, E. (1987). Vibrational communication in subterranean mole rats (Spalax ehrenberghi). Behavioral Ecology and Sociobiology, 21, 31–33.CrossRefGoogle Scholar
  38. Heth, G., Frankenberg, E., Pratt, H., & Nevo, E. (1991). Seismic communication in the blind subterranean mole rat: Patterns of head thumping and their detection in the Spalax ehrenbergi superspecies in Israel. Journal of Zoology, London, 224, 633–638.CrossRefGoogle Scholar
  39. Heth, G., Todrank, J., & Nevo, E. (2000). Do Spalax ehrenbergi blind mole rats use food odours in searching for and selecting food? Ecology Ethology & Evolution, 12, 75–82.CrossRefGoogle Scholar
  40. Heth, G., Todrank, J., Begall, S., Zilbiger, Y., et al. (2002). Odours underground: Subterranean rodents may not forage “blindly”. Behavioral Ecology and Sociobiology, 52, 53–58.CrossRefGoogle Scholar
  41. Hickman, G. C. (1990). Adaptiveness of tunnel system features in subterranean mammal burrows. In E. Nevo, & O. A. Reig (Eds.), Evolution of subterranean mammals at the organismal and molecular levels (pp 185–210). New York: Alan R. Liss, Inc.Google Scholar
  42. Hrouzková, E., Dvoráková, V., Jedlicka, P., & Sumbera, R. (2013). Seismic communication in demon African mole rat Tachyoryctes daemon from Tanzania. Journal of Ethology, 31(3), 255–259.CrossRefGoogle Scholar
  43. Jarvis, J. U. M., & Bennett, N. C. (1991). Ecology and behavior of the family Bathyergidae. In P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander (Eds.), The biology of the naked mole rat (pp. 66–96). Princeton: Princeton University Press.Google Scholar
  44. Kilner, R., & Johnstone, R. A. (1997). Begging the question: Are offspring solicitation behaviours signals of need? Trends in Ecology and Evolution, 12, 11–15.CrossRefPubMedGoogle Scholar
  45. Kimchi, T., & Terkel, J. (2003). Mole rats (Spalax ehrenbergi) select bypass burrowing strategies in accordance with obstacle size. Naturwissenschaften, 90, 36–39.PubMedGoogle Scholar
  46. Kimchi, T., Reshef, M., & Terkel, J. (2005). Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal. The Journal of Experimental Biology, 208, 647–659.CrossRefPubMedGoogle Scholar
  47. Knotková, E., Veitlm S., Šumbera, R., Sedláček, F., & Burda, H. (2009). Vocalisations of the silvery mole rat: Comparison of vocal repertoires in subterranean rodents with different social systems. Bioacoustics, 18, 241–257.CrossRefGoogle Scholar
  48. Krams, I., Krama, T., Freeberg, T. M., Kullberg, C., & Lucas, J. R. (2012). Linking social complexity and vocal complexity: A parid perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1879–1891.CrossRefGoogle Scholar
  49. Lacey, E. A. (2000). Spatial and social systems of subterranean rodents. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground: The biology of subterranean rodents (pp. 257–296). Chicago: The University of Chicago Press.Google Scholar
  50. Lacey, E. A., Patton, J. L., & Cameron, G. N., Eds. (2000). Life underground: The biology of subterranean rodents. Chicago: The University of Chicago Press.Google Scholar
  51. Lange, S., Neumann, B., Hagemeyer, P., & Burda, H. (2005). Kairomone-guided food location in subterranean Zambian mole rats (Cryptomys spp., Bathyergidae). Folia Zoologica, 54, 263–268.Google Scholar
  52. Lange, S., Burda, H., Wegner, R. E., Dammann, P., et al. (2007). Living in a “stethoscope”: Burrow acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94(2), 134–138.CrossRefPubMedGoogle Scholar
  53. Malizia, A. I., Zenuto, R. R., & Busch, C. (1995). Demographic and reproductive attributes of dispersers in two populations of the subterranean rodent Ctenomys talarum (tuco-tuco). Canadian Journal of Zoology, 73, 732–738.CrossRefGoogle Scholar
  54. Mapelli, M. J., Mora, M. S., Mirol, P. M., & Kittlein, M. J. (2012). Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conservation Genetics, 13, 165–181.CrossRefGoogle Scholar
  55. Mason, M. J., & Narins, P. M. (2010). Seismic sensitivity and communication in subterranean mammals. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 121–139). Kerala: Transworld Research Network.Google Scholar
  56. Mason, M. J., Lai, F. W. S., Li, J. G., & Nevo, E. (2010). Middle ear structure and bone conduction in Spalax, Eospalax and Tachyoryctes mole rats (Rodentia: Spalacidae). Journal of Morphology, 271, 462–472.PubMedGoogle Scholar
  57. Morton, E. S. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17–34.CrossRefGoogle Scholar
  58. Narins, P. M., Reichman, O. J., Jarvis, J. U. M., & Lewis, E. R. (1992). Seismic signal transmission between burrows of the cape mole rat, Georychus capensis. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 170, 13–21.CrossRefPubMedGoogle Scholar
  59. Nemec, P., Burda, H., & Peichl, L. (2004). Subcortical visual system of the African mole rat Cryptomys anselli: To see or not to see? European Journal of Neuroscience, 20, 757–768.CrossRefPubMedGoogle Scholar
  60. Nevo, E. (1999). Mosaic evolution of subterranean mammals: Regression, progression and global convergence. New York: Oxford Science Publications.Google Scholar
  61. Nevo, E., Heth, G., Beiles, A., & Frankenberg, E. (1987). Geographic dialects in blind mole rats: Role of vocal communication in active speciation. Proceedings of the National Academy of Sciences of the United States of America, 84, 3312–3315.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nevo, E., Heth, G., & Pratt, H. (1991). Seismic communication in a blind subterranean mammal: A major somatosensory mechanism in adaptive evolution underground. Proceedings of the National Academy of Sciences of the United States of America, 88, 1256–1260.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ord, T. J., & García-Porta, J. (2012). Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1811–1828.CrossRefGoogle Scholar
  64. Owings, D. H. & Morton, E. S. (1998). Animal vocal communication: A new approach. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  65. Pepper, J. W., Braude, S. H., Lacey, E. A., & Sherman, P. W. (1991). Vocalizations of the naked mole rat. In P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander (Eds.), The biology of the naked mole rat (pp. 243–274). Princeton: Princeton University Press.Google Scholar
  66. Poduschka, W. (1978) Abwehrreaktion der Mullratte, Cryptomys hottentotus (Lesson, 1826). Säugetierkunde Mitt, 26, 260–268.Google Scholar
  67. Pollard, K. A., & Blumstein, D. T. (2012). Evolving communicative complexity: Insights from rodents and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1869–1878.CrossRefGoogle Scholar
  68. Rado, R., Levi, N., Hauser, H., Witcher, J., et al. (1987). Seismic signalling as a means of communication in a subterranean mammal. Animal Behaviour, 35, 1249–1251.CrossRefGoogle Scholar
  69. Rado, R., Himelfarb, M., Arensburg, B., Terkel, J., & Wollberg, Z. (1989). Are seismic communication signals transmitted in the Blind mole-rat by bone conduction? Hearing Research, 41, 23–30.CrossRefPubMedGoogle Scholar
  70. Rado, R., Terkel, J. & Wollberg, Z. (1998). Seismic communication signals in the blind mole rat (Spalax ehrenbergi): Electrophysiological and behavioral evidence for their processing by the auditory system. Journal of Comparative Physiology: Sensory, Neural, and Behavioral Physiology, 183, 503–511.CrossRefPubMedGoogle Scholar
  71. Randall, J. A. (2010). Drummers and stompers: Vibrational communication in mammals. In C. E. O’Connel-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and functions across taxa (pp 99–120). Trivandrum, India: Transworld Research Network.Google Scholar
  72. Randall, J. A. (2014). Vibrational communication: Spiders to kangaroo rats. In G. Witzany (Ed.), Biocommunication of animals (pp. 103–133). Dordrecht, Netherlands: Springer Science+Business Media.CrossRefGoogle Scholar
  73. Scharff, A., Locker-Grütjen, O., Kawalika, M., & Burda, H. (2001). Natural history of the giant mole rat, Cryptomys mechowi (Rodentia: Bathyergidae), from Zambia. Journal of Mammalogy, 82, 1003–1015.CrossRefGoogle Scholar
  74. Schleich, C. E., & Busch, C. (2002a). Acoustic signals of a solitary subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae): Physical characteristics and behavioural correlates. Journal of Ethology, 20, 123–131.CrossRefGoogle Scholar
  75. Schleich, C. E., & Busch, C. (2002b). Juvenile vocalizations of Ctenomys talarum (Rodentia: Octodontidae). Acta Theriologica, 47, 25–33.CrossRefGoogle Scholar
  76. Schleich, C. E., & Busch, C. (2004). Energetic expenditure during vocalization in pups of the subterranean rodent Ctenomys talarum. Naturwissenshaften, 91, 548–551.CrossRefGoogle Scholar
  77. Schleich, C. E., & Zenuto, R. R. (2007). Use of vegetation chemical signals for digging orientation in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae). Ethology, 113, 573–578.CrossRefGoogle Scholar
  78. Schleich, C., Veitl, S., Knotkova´, E., & Begall, S. (2007). Acoustic communication in subterranean rodents. In S. Begall, H. Burda, & C. Schleich (Eds.), Subterranean rodents: News from underground (pp 113–127). Berlin: Springer Science+Business Media.CrossRefGoogle Scholar
  79. Schleich, C. E., & Antenucci, D. C. (2009). Sound transmission and burrow characteristics of the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae). Acta Theriologica, 54(2), 165–170.CrossRefGoogle Scholar
  80. Sichilima, A. M., Faulkes, C. G., & Bennett, N. C. (2008). Field evidence for a seasonality of reproduction and colony size in the Afrotropical giant mole rat Fukomys mechowii (Rodentia: Bathyergidae). African Ecology, 43, 144–149.Google Scholar
  81. Šklíba, J., Mazoch, V., Patzenhauerovám, H., Hrouzková, E., et al. (2012). A maze-lover’s dream: Burrow architecture, natural history and habitat characteristics of Ansell's mole rat (Fukomys anselli). Mammalian Biology, 77, 420–427.CrossRefGoogle Scholar
  82. Sobrero, R., Inostroza-Michael, O., Hernández, C. E., & Ebensperger, L. A. (2014). Phylogeny modulates the effects of ecological conditions on group living across hystricognath rodents. Animal Behaviour, 94, 27–34.CrossRefGoogle Scholar
  83. Šumbera, R., Mazoch, V., Patzenhauerová, H., Matěj Lövy, M., et al. (2012). Burrow architecture, family composition and habitat characteristics of the largest social African mole rat: The giant mole rat constructs really giant burrow systems. Acta Theriologica, 57(2), 121–130.CrossRefGoogle Scholar
  84. Tammone, M. N., Lacey, E. A., & Relva, M. A. (2012). Habitat use by colonial tuco-tucos (Ctenomys sociabilis): Specialization, variation, and sociality. Journal of Mammalogy, 93(6), 1409–1419.CrossRefGoogle Scholar
  85. Taylor, A. M., Charlton, B. D., & Reby, D. (2016). Vocal production by terrestrial mammals: Source, filter, and function. In R. A. Suthers, W. T. Fitch, R. R. Fay, & A. N. Popper (Eds.), Vertebrate sound production and acoustic communication (pp. 229–260). Switzerland: Springer Science+Business Media.CrossRefGoogle Scholar
  86. Vanden Hole, C., Van Daele, P. A. A. G., Desmet, N., Devos, P., & Adriaens, D. (2014). Does sociality imply a complex vocal communication system? A case study for Fukomys micklemi (Bathyergidae, Rodentia). Bioacoustics, 23, 143–160.CrossRefGoogle Scholar
  87. Veitl, S., Begall, S., & Burda, H. (2000). Ecological determinants of vocalisation parameters: The case of the coruro Spalacopus cyanus (Octodontidae), a fossorial social rodent. Bioacoustics, 11, 129–148.CrossRefGoogle Scholar
  88. Walton, A. H., Nedbal, M. A., & Honeycutt, R. L. (2000). Evidence from Intron 1 of the nuclear transthyretin (prealbumin) gene for the phylogeny of African mole-rats (Bathyergidae). Molecular Phylogenetics and Evolution, 16, 467–474.CrossRefPubMedGoogle Scholar
  89. Wiltschko, R., & Wiltschko, W. (1995). Magnetic orientation in animals. New York: Springer-Verlag.CrossRefGoogle Scholar
  90. Yosida, S., Kobayas, K. I., Ikebuchi, M., Ozaki, R., & Okanoya, K. (2007). Antiphonal vocalization of a subterranean rodent, the naked mole rat (Heterocephalus glaber). Ethology, 113, 703–710.CrossRefGoogle Scholar
  91. Yosida, S., & Okanoya, K. (2009). Naked mole rat is sensitive to social hierarchy encoded in antiphonal vocalization. Ethology, 115, 823–831.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IIMyC-Conicet, Universidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Sección Etología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations