The Ciona Notochord Gene Regulatory Network

  • Michael VeemanEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


Complex gene regulatory networks are at the heart of cell fate specification and differentiation. The simple chordate Ciona has remarkable advantages for the dissection of these regulatory networks, including a stereotypically chordate but extremely small and simple embryo, a streamlined and compact genome, and highly efficient transgenesis by electroporation. Here we use the Ciona notochord as an example of how these characteristics can be exploited to understand both the early network controlling cell fate as well as the tissue-specific network controlling notochord differentiation and morphogenesis.


  1. Azumi K, Sabau SV, Fujie M et al (2007) Gene expression profile during the life cycle of the urochordate Ciona intestinalis. Dev Biol 308:572–582. Scholar
  2. Bertrand V, Hudson C, Caillol D et al (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627CrossRefPubMedGoogle Scholar
  3. Bouchemousse S, Liautard-Haag C, Bierne N, Viard F (2016) Distinguishing contemporary hybridization from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated Ciona species. Mol Ecol 25:5527–5542. Scholar
  4. Brozovic M, Martin C, Dantec C et al (2016) ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Res 44:D808–D818. Scholar
  5. Brozovic M, Dantec C, Dardaillon J et al (2017) ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res.
  6. Capellini TD, Dunn MP, Passamaneck YJ et al (2008) Conservation of notochord gene expression across chordates: insights from the Leprecan gene family. Genesis 46:683–696. Scholar
  7. Caputi L, Andreakis N, Mastrototaro F et al (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci USA 104:9364–9369. Scholar
  8. Carlson M, Reeves W, Veeman M (2015) Stochasticity and stereotypy in the Ciona notochord. Dev Biol 397(2):248–256. Scholar
  9. Chan SS-K, Kyba M (2013) What is a master regulator? J Stem Cell Res Ther 3:114. Scholar
  10. Chen JS, Pedro MS, Zeller RW (2011) miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development 138:4943–4953. Scholar
  11. Chiba S, Jiang D, Satoh N, Smith WC (2009) Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 136:35–39. Scholar
  12. Corbo JC, Erives A, Di Gregorio A, et al (1997a) Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate. Development 124:2335–2344Google Scholar
  13. Corbo JC, Levine M, Zeller RW (1997b) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602PubMedGoogle Scholar
  14. Corbo JC, Fujiwara S, Levine M, Di Gregorio A (1998) Suppressor of hairless activates brachyury expression in the Ciona embryo. Dev Biol 203:358–368. Scholar
  15. Crews ST, Pearson JC (2009) Transcriptional autoregulation in development. Curr Biol 19(6):R241. Scholar
  16. Darras S, Nishida H (2001) The BMP signaling pathway is required together with the FGF pathway for notochord induction in the ascidian embryo. Development 128:2629–2638PubMedGoogle Scholar
  17. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314. Scholar
  18. Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167. Scholar
  19. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968. Scholar
  20. Deng W, Nies F, Feuer A et al (2013) Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci USA 110:14972–14977. Scholar
  21. Denker E, Bocina I, Jiang D (2013) Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 140:2985–2996. Scholar
  22. Dong B, Horie T, Denker E et al (2009) Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol 330:237–249. Scholar
  23. Dong B, Deng W, Jiang D (2011) Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis. Development 138:1631–1641. Scholar
  24. Dunn MP, Di Gregorio A (2009) The evolutionarily conserved leprecan gene: its regulation by Brachyury and its role in the developing Ciona notochord. Dev Biol 328:561–574. Scholar
  25. Endo T, Ueno K, Yonezawa K et al (2011) CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality. Nucleic Acids Res 39:D807–D814. Scholar
  26. Esposito R, Yasuo H, Sirour C et al (2017) Patterning of brain precursors in ascidian embryos. Development 144:258–264. Scholar
  27. Farley EK, Olson KM, Zhang W et al (2015) Suboptimization of developmental enhancers. Science 350:325–328. Scholar
  28. Farley EK, Olson KM, Zhang W et al (2016) Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc Natl Acad Sci USA 113:6508–6513. Scholar
  29. Fujiwara S, Corbo JC, Levine M (1998) The snail repressor establishes a muscle/notochord boundary in the Ciona embryo. Development 125:2511–2520PubMedGoogle Scholar
  30. Fujiwara S, Maeda Y, Shin-I T et al (2002) Gene expression profiles in Ciona intestinalis cleavage-stage embryos. Mech Dev 112:115–127CrossRefPubMedGoogle Scholar
  31. Gandhi S, Haeussler M, Razy-Krajka F et al (2017) Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona. Dev Biol 425:8–20. Scholar
  32. Di Gregorio A, Levine M (1999) Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. Development 126:5599–5609Google Scholar
  33. Hotta K, Takahashi H, Erives A et al (1999) Temporal expression patterns of 39 Brachyury-downstream genes associated with notochord formation in the Ciona intestinalis embryo. Develop Growth Differ 41:657–664CrossRefGoogle Scholar
  34. Hotta K, Takahashi H, Asakura T et al (2000) Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. Dev Biol 224:69–80. Scholar
  35. Hotta K, Mitsuhara K, Takahashi H et al (2007a) A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn 236:1790–1805. Scholar
  36. Hotta K, Yamada S, Ueno N et al (2007b) Brachyury-downstream notochord genes and convergent extension in Ciona intestinalis embryos. Develop Growth Differ 49:373–382. Scholar
  37. Hotta K, Takahashi H, Satoh N, Gojobori T (2008) Brachyury-downstream gene sets in a chordate, Ciona intestinalis: integrating notochord specification, morphogenesis and chordate evolution. Evol Dev 10:37–51. Scholar
  38. Hudson C, Yasuo H (2005) Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development 132:1199–1210. Scholar
  39. Hudson C, Yasuo H (2006) A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 133:2855–2864. Scholar
  40. Hudson C, Kawai N, Negishi T, Yasuo H (2013) β-Catenin-driven binary fate specification segregates germ layers in ascidian embryos. Curr Biol 23:491–495. Scholar
  41. Hudson C, Sirour C, Yasuo H (2016) Co-expression of Foxa. a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. eLife 5.
  42. Ikeda T, Satou Y (2017) Differential temporal control of Foxa. a and Zic-rb specifies brain versus notochord fate in the ascidian embryo. Development 144:38–43. Scholar
  43. Imai K, Takada N, Satoh N, Satou Y (2000) (beta)-catenin mediates the specification of endoderm cells in ascidian embryos. Development 127:3009–3020PubMedGoogle Scholar
  44. Imai KS, Satoh N, Satou Y (2002a) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129:1729–1738PubMedGoogle Scholar
  45. Imai KS, Satoh N, Satou Y (2002b) An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129:3441–3453PubMedGoogle Scholar
  46. Imai KS, Satou Y, Satoh N (2002c) Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle in Ciona savignyi embryos. Development 129:2723–2732PubMedGoogle Scholar
  47. Imai KS, Hino K, Yagi K et al (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131:4047–4058. Scholar
  48. Imai KS, Levine M, Satoh N, Satou Y (2006) Regulatory blueprint for a chordate embryo. Science 312:1183–1187. Scholar
  49. Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293. Scholar
  50. Imai KS, Hudson C, Oda-Ishii I et al (2016) Antagonism between β-catenin and Gata. a sequentially segregates the germ layers of ascidian embryos. Development 143:4167–4172. Scholar
  51. Jiang D, Smith WC (2007) Ascidian notochord morphogenesis. Dev Dyn 236:1748–1757. Scholar
  52. Jiang D, Munro EM, Smith WC (2005) Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 15:79–85CrossRefPubMedGoogle Scholar
  53. Jose-Edwards DS, Kerner P, Kugler JE et al (2011) The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network. Dev Dyn 240:1793–1805. Scholar
  54. Jose-Edwards DS, Oda-Ishii I, Nibu Y, Di Gregorio A (2013) Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development 140:2422–2433. Scholar
  55. Jose-Edwards DS, Oda-Ishii I, Kugler JE et al (2015) Brachyury, Foxa2 and the cis-regulatory origins of the Notochord. PLoS Genet 11:e1005730. Scholar
  56. Katikala L, Aihara H, Passamaneck YJ et al (2013) Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord. PLoS Biol 11:e1001697. Scholar
  57. Kourakis MJ, Reeves W, Newman-Smith E et al (2014) A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona. Dev Biol 395:120–130. Scholar
  58. Kubo A, Imai KS, Satou Y (2009) Gene-regulatory networks in the Ciona embryos. Brief Funct Genomic Proteomic 8:250–255. Scholar
  59. Kubo A, Suzuki N, Yuan X et al (2010) Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 137:1613–1623. Scholar
  60. Kugler JE, Passamaneck YJ, Feldman TG et al (2008) Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis. Genesis 46:697–710. Scholar
  61. Kusakabe T (2005) Decoding cis-regulatory systems in ascidians. Zool Sci 22:129–146. Scholar
  62. Kusakabe T, Yoshida R, Kawakami I et al (2002) Gene expression profiles in tadpole larvae of Ciona intestinalis. Dev Biol 242:188–203. Scholar
  63. Lemaire P (2009) Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 332:48–60. Scholar
  64. Miya T, Nishida H (2003) An Ets transcription factor, HrEts, is target of FGF signaling and involved in induction of notochord, mesenchyme, and brain in ascidian embryos. Dev Biol 261:25–38CrossRefPubMedGoogle Scholar
  65. Munro EM, Odell GM (2002) Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129:13–24PubMedGoogle Scholar
  66. Munro E, Robin F, Lemaire P (2006) Cellular morphogenesis in ascidians: how to shape a simple tadpole. Curr Opin Genet Dev 16:399–405. Scholar
  67. Newman-Smith E, Kourakis MJ, Reeves W et al (2015) Reciprocal and dynamic polarization of planar cell polarity core components and myosin. eLife 2015.
  68. Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme: III Up to the tissue restricted stage. Dev Biol 121:526–541CrossRefPubMedGoogle Scholar
  69. Nishida H (2005) Specification of embryonic axis and mosaic development in ascidians. Dev Dyn 233:1177–1193. Scholar
  70. Nydam ML, Harrison RG (2011) Introgression despite substantial divergence in a broadcast spawning marine invertebrate. Evolution (N Y) 65:429–442. Scholar
  71. Oda-Ishii I, Di Gregorio A (2007) Lineage-independent mosaic expression and regulation of the Ciona multidom gene in the ancestral notochord. Dev Dyn 236:1806–1819. Scholar
  72. Oda-Ishii I, Ishii Y, Mikawa T (2010) Eph regulates dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation. PLoS One 5:e13689. Scholar
  73. Oda-Ishii I, Kubo A, Kari W et al (2016) A maternal system initiating the zygotic developmental program through combinatorial repression in the ascidian embryo. PLoS Genet 12:e1006045. Scholar
  74. Panopoulou G, Hennig S, Groth D et al (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066. Scholar
  75. Passamaneck YJ, Di Gregorio A (2005) Ciona intestinalis: chordate development made simple. Dev Dyn 233:1–19. Scholar
  76. Passamaneck YJ, Katikala L, Perrone L et al (2009) Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis. Development 136:3679–3689. Scholar
  77. Pennati R, Ficetola GF, Brunetti R et al (2015) Morphological differences between larvae of the ciona intestinalis species complex: hints for a valid taxonomic definition of distinct species. PLoS One 10:e0122879. Scholar
  78. Picco V, Hudson C, Yasuo H (2007) Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134:1491–1497. Scholar
  79. Reeves W, Thayer R, Veeman M (2014) Anterior-posterior regionalized gene expression in the Ciona notochord. Dev Dyn 243.
  80. Reeves WM, Wu Y, Harder MJ, Veeman MT (2017) Functional and evolutionary insights from the Ciona notochord transcriptome. Development 144.
  81. Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510. Scholar
  82. Sasakura Y, Yoshida K, Treen N (2017) Genome editing of the Ascidian Ciona intestinalis with TALE nuclease. Methods Mol Biol 1630:235–245. Scholar
  83. Sato A, Shimeld SM, Bishop JDD (2014) Symmetrical reproductive compatibility of two species in the Ciona intestinalis (Ascidiacea) species complex, a model for marine genomics and developmental biology. Zool Sci 31:369–374. Scholar
  84. Satoh N (2014) Developmental genomics of ascidians. John WIley & Sons, Hoboken, NJGoogle Scholar
  85. Satoh N, Levine M (2005) Surfing with the tunicates into the post-genome era. Genes Dev 19:2407–2411. Scholar
  86. Satou Y, Imai KS, Satoh N (2001a) Action of morpholinos in Ciona embryos. Genesis 30:103–106CrossRefPubMedGoogle Scholar
  87. Satou Y, Takatori N, Yamada L et al (2001b) Gene expression profiles in Ciona intestinalis tailbud embryos. Development 128:2893–2904PubMedGoogle Scholar
  88. Saunders LR, McClay DR (2014) Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Development 141:1503–1513. Scholar
  89. Segade F, Cota C, Famiglietti A et al (2016) Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo 7:21. Scholar
  90. Sehring IM, Dong B, Denker E et al (2014) An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol 12:e1001781. Scholar
  91. Shi W, Peyrot SM, Munro E, Levine M (2009) FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development 136:23–28. Scholar
  92. Showell C, Binder O, Conlon FL (2004) T-box genes in early embryogenesis. Dev Dyn 229:201–218. Scholar
  93. Sierro N, Kusakabe T, Park K-J et al (2006) DBTGR: a database of tunicate promoters and their regulatory elements. Nucleic Acids Res 34:D552–D555. Scholar
  94. Small KS, Brudno M, Hill MM, Sidow A (2007) Extreme genomic variation in a natural population. Proc Natl Acad Sci USA 104:5698–5703. Scholar
  95. Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192:55–66. Scholar
  96. Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120. Scholar
  97. Takahashi H, Hotta K, Erives A et al (1999a) Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev 13:1519–1523CrossRefPubMedPubMedCentralGoogle Scholar
  98. Takahashi H, Mitani Y, Satoh G, Satoh N (1999b) Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development 126:3725–3734PubMedGoogle Scholar
  99. Takahashi H, Hotta K, Takagi C et al (2010) Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos. Zool Sci 27:110–118. Scholar
  100. Takatori N, Kumano G, Saiga H, Nishida H (2010) Segregation of germ layer fates by nuclear migration-dependent localization of Not mRNA. Dev Cell 19:589–598. Scholar
  101. Tolkin T, Christiaen L (2012) Development and evolution of the ascidian cardiogenic mesoderm. Curr Top Dev Biol 100:107–142CrossRefPubMedGoogle Scholar
  102. Tsagkogeorga G, Cahais V, Galtier N (2012) The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol 4:852–861. Scholar
  103. Veeman MT, Smith WC (2013) Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper. Dev Biol 373.
  104. Veeman MT, Nakatani Y, Hendrickson C et al (2008) Chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development:135, 33–141.
  105. Wang W, Christiaen L (2012) Transcriptional enhancers in ascidian development. Curr Top Dev Biol 98:147–172. Scholar
  106. Weintraub H, Tapscott SJ, Davis RL et al (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438CrossRefPubMedGoogle Scholar
  107. Wu S-Y, McClay DR (2007) The Snail repressor is required for PMC ingression in the sea urchin embryo. Development 134:1061–1070. Scholar
  108. Wu S-Y, Yang Y-P, McClay DR (2008) Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 319:406–415. Scholar
  109. Yagi K, Satou Y, Satoh N (2004) A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 131:1279–1288. Scholar
  110. Yasuo H, Hudson C (2007) FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Dev Biol 302:92–103. Scholar
  111. Yasuo H, Satoh N (1993) Function of vertebrate T gene. Nature 364:582–583. Scholar
  112. Yasuo H, Satoh N (1998) Conservation of the developmental role of Brachyury in notochord formation in a urochordate, the ascidian Balocynthia roretzi. Dev Biol 200:158–170CrossRefPubMedGoogle Scholar
  113. Yoshida K, Treen N, Hozumi A et al (2014) Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis 52:431–439. Scholar
  114. Zhan A, MacIsaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19:4678–4694. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations