Advertisement

Medusa: A Review of an Ancient Cnidarian Body Form

  • Cheryl Lewis Ames
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.

Notes

Acknowledgments

I am grateful to my PhD co-advisor Dr. Allen G. Collins and my master’s thesis advisor the late Professor Masashi Yamaguchi for their unwavering mentorship on all things medusa, and for photographs they graciously provided for use in this work: Figs. 7.1A, E, 7.2A, E, and 7.3A–J, M (AGC) and Fig. 7.1B (MY); all images were digitally retouched. I would also like to extend my gratitude to Smithsonian National Museum of Natural History interns Anna Klompen (Fig. 7.1D), Kate Muffett (Fig. 7.2D) and Mehr Kumar (Fig. 7.3K) for their assistance with photographs of live medusae at the cnidarian culture lab (The Aquaroom), and to Tara Lynn and Dr. Lauren Field for assistance with photographs of nematocysts (Fig. 7.4A and Fig 7.4D–F respectively). Figure 7.1C was digitally retouched from the original image by Avispa marina.jpg, Guido Gautsch, Toyota, Japan, derivative work, Mithril (Avispa marina.jpg) [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Avispa_marina_cropped.png; Fig. 7.2G was digitally retouched from the original image by NOAA Ocean Explorer from USA [CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0], via Wikimedia Commons: https://commons.wikimedia.org/wiki/File%3AAtolla_wyvillei_(Operation_Deep_Scope_2004).jpg. All other images were photographed by the author in The Aquaroom (Smithsonian, Washington, DC) or National Aquarium’s Jellies Invasion exhibit (Baltimore, USA).

References

  1. Abrams MJ, Goentoro L (2016) Symmetrization in jellyfish: reorganization to regain function, and not lost parts. Zoology 119(1):1–3.  https://doi.org/10.1016/j.zool.2015.10.001. Elsevier GmbHCrossRefPubMedPubMedCentralGoogle Scholar
  2. Acuna JL et al (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333(6049):1627–1629. https://docs.rwu.edu/fcas_fp/91/. Accessed 28 May 2018PubMedCrossRefGoogle Scholar
  3. Agassiz L (1862) Contributions to the natural history of the United States of America. Second monograph. In Five parts. I. Acalephs in general. II. Ctenophore. III. Discophore. IV. Hydroidae. V. Homologies of the Radiatea; with Forty-Six Plates. Vol IV. Little, Brown, BostonGoogle Scholar
  4. Aglieri G et al (2014) First evidence of inbreeding, relatedness and chaotic genetic patchiness in the Holoplanktonic Jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria) D. Canestrelli, ed. PLoS One 9(6):e99647. http://dx.plos.org/10.1371/journal.pone.0099647 [accessed March 2, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  5. Albert DJ (2011) What’s on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish. Neurosci Biobehav Rev 35(3):474–482.  https://doi.org/10.1016/j.cub.2013.03.057CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anderson PA (1985) Physiology of a bidirectional, chemical synapse. J Neurophysiol 53(3):821–835PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anderson PA, Bouchard C (2009) The regulation of cnidocyte discharge. Toxicon 54(8):1046–1053.  https://doi.org/10.1016/j.toxicon.2009.02.023CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arai MN (1997) A functional biology of Scyphozoa. Chapman and Hall, LondonGoogle Scholar
  9. Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85(3):523–536CrossRefGoogle Scholar
  10. Arai MN (2009) The potential importance of podocysts to the formation of scyphozoan blooms : a review. Hydrobiologia 616(1):241–246CrossRefGoogle Scholar
  11. Arneson AC, Cutress CE (1976) Life history of Carybdea alata Reynaud, 1830 (Cubomedusae). In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum, New York, pp 227–236CrossRefGoogle Scholar
  12. Azuma H et al (1986) Calcium-dependent contractile response of arterial smooth muscle to a jellyfish toxin (pCrTX: Carybdea rastonii). Br J Pharmacol 88(3):549–559PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bayha KM, Graham WM (2013) Nonindigenous marine jellyfish: invasiveness, invasibility, and impacts. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 45–77Google Scholar
  14. Bayha KM et al (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50(3):436–455. http://icb.oxfordjournals.org/cgi/doi/10.1093/icb/icq074PubMedCrossRefGoogle Scholar
  15. Bentlage B, Peterson A, Cartwright P (2009) Inferring distributions of chirodropid box-jellyfishes (Cnidaria: Cubozoa) in geographic and ecological space using ecological niche modeling. Mar Ecol Prog Ser 384:121–133. https://www.int-res.com/abstracts/meps/v384/p121-133/. Accessed 27 February 2014CrossRefGoogle Scholar
  16. Bentlage B et al (2010) Evolution of box jellyfish (Cnidaria: Cubozoa), a group of highly toxic invertebrates. Proc R Soc B Biol Sci 277(1680):493–501. http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2009.1707 [Accessed February 27, 2014]CrossRefGoogle Scholar
  17. Berking S et al (2005) A newly discovered oxidant defence system and its involvement in the development of Aurelia aurita (Scyphozoa, Cnidaria): reactive oxygen species and elemental iodine control medusa formation. Int J Dev Biol 49(8):969–976PubMedCrossRefGoogle Scholar
  18. Bielecki J et al (2014) Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa). PLoS One 9(6):e98870. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4047050&tool=pmcentrez&rendertype=abstract [Accessed January 29, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boero F et al (1998) The cnidarian premises of metazoan evolution: from triploblasty, to coelom formation, to metamery. Ital J Zool 65:5–9CrossRefGoogle Scholar
  20. Boero F, Bouillon J, Gravili C (2000) A survey of Zanclea, Halocoryne and Zanclella with description of new species. Ital J Zool 67:93–124CrossRefGoogle Scholar
  21. Boero F et al (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310. http://www.int-res.com/abstracts/meps/v356/p299-310/CrossRefGoogle Scholar
  22. Bosch TCG et al (2016) Back to the basics: Cnidarians start to fire. Trends Neurosci 40(2):92–105PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bouillon J et al (2006) An introduction to Hydrozoa. Mémoires du Muséum national d’Histoire naturelle. Muséum national d’Histoire naturelle, ParisGoogle Scholar
  24. Brekhman V et al (2015) Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics 16:74. http://www.biomedcentral.com/1471-2164/16/74PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brinkman DL et al (2015) Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics 16:407. http://www.biomedcentral.com/1471-2164/16/407 [Accessed June 5, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brotz L (2016) Jellyfish fisheries of the world, PhD dissertation, zoology. The University of British Columbia, VancouverGoogle Scholar
  27. Brotz L et al (2017) Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds. Rev Fish Biol Fisheries 27:1–29CrossRefGoogle Scholar
  28. Calder DR, Burrell VG (1969) Brackish water hydromedusa Maeotias inexpectata in North America. Nature 222:694–695CrossRefGoogle Scholar
  29. Cartwright P, Collins A (2007) Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. Integr Comp Biol 47(5):744–751PubMedCrossRefGoogle Scholar
  30. Cartwright P, Nawrocki AM (2010) Character evolution in Hydrozoa (Phylum Cnidaria). Integr Comp Biol 50(3):456–472PubMedCrossRefGoogle Scholar
  31. Cegolon L et al (2013) Jellyfish stings and their management: a review. Mar Drugs 11(2):523–550PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ceh J et al (2015) The elusive life cycle of scyphozoan jellyfish—metagenesis revisited. Sci Rep 5(12037):1–13.  https://doi.org/10.1038/srep12037CrossRefGoogle Scholar
  33. Chapman JA et al (2010) The dynamic genome of Hydra. Nature 464(25):592–596PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cheng X et al (2017) Isolation, characterization and evaluation of collagen from jellyfish Rhopilema esculentum Kishinouye for use in hemostatic applications. PLoS One:1–21Google Scholar
  35. Chiaverano LM et al (2013) Long-term fluctuations in circalunar beach aggregations of the box jellyfish Alatina moseri in Hawaii, with links to environmental variability. PLoS One 8(10):e77039. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3806728&tool=pmcentrez&rendertype=abstract [Accessed February 19, 2014]PubMedPubMedCentralCrossRefGoogle Scholar
  36. Clausen C (1967) Morphological studies of Halammohydra remane (Hydrozoa). Sarsia 29:349–370CrossRefGoogle Scholar
  37. Coates MM et al (2006) The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J Exp Biol 209(Pt 19):3758–3765. http://www.ncbi.nlm.nih.gov/pubmed/16985192 [Accessed June 10, 2011]PubMedCrossRefPubMedCentralGoogle Scholar
  38. Colin SP et al (2013) Propulsion in Cubomedusae: mechanisms and utility. PLoS One 8(2):e56393PubMedPubMedCentralCrossRefGoogle Scholar
  39. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432CrossRefGoogle Scholar
  40. Collins AG (2009) Recent insights into Cnidarian phylogeny. August 2008Google Scholar
  41. Collins AG et al (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55(1):97–115. http://www.ncbi.nlm.nih.gov/pubmed/16507527 [Accessed March 19, 2014]PubMedCrossRefGoogle Scholar
  42. Collins AG et al (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. J Mar Biol Assoc UK 88(8):1673. http://www.journals.cambridge.org/abstract_S0025315408001732CrossRefGoogle Scholar
  43. Conant FS (1898) The Cubomedusae. By Franklin Story Conant. A memorial volume. Memoirs from the biological laboratory of the Johns Hopkins University, vol IV, issue 1. The Johns Hopkins Press, Baltimore. http://www.biodiversitylibrary.org/item/16812#page/9/mode/1upCrossRefGoogle Scholar
  44. Condon RH et al (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62(2):160–169CrossRefGoogle Scholar
  45. Condon RH et al (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci USA 110(3):1000–1005. http://www.pnas.org/cgi/doi/10.1073/pnas.1210920110PubMedCrossRefPubMedCentralGoogle Scholar
  46. Cuvier G (1830) Le règne animal distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Deuxieme Tome. Deterville, ParisGoogle Scholar
  47. Daly M et al (2007) The phylum Cnidaria : a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182Google Scholar
  48. David CN et al (2008) Evolution of complex structures: minicollagens shape the cnidarian nematocyst. Trends Genet 24(9):431–438. http://www.ncbi.nlm.nih.gov/pubmed/18676050 [Accessed January 29, 2015]PubMedCrossRefGoogle Scholar
  49. Dawson MN (2005) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa:Semaeostomeae: Cyaneidae) in South-eastern Australia. Invertebr Systemat 19:361–370CrossRefGoogle Scholar
  50. Dawson MN, Hamner WM (2009) A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616:193–215CrossRefGoogle Scholar
  51. Dawson MN et al (2014) Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms. Biol Invasions 17(3):851–867. http://link.springer.com/10.1007/s10530-014-0732-z [Accessed April 1, 2015]CrossRefGoogle Scholar
  52. Desmond Ramirez M et al (2011) Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Vis Neurosci 28(4):265–279PubMedCrossRefGoogle Scholar
  53. Dong J et al (2008) Comparison of life cycles and morphology of Cyanea nozakii and other scyphozoans. Plankton Benthos Res 3(2008):118–124CrossRefGoogle Scholar
  54. Doyle TK et al (2014) Ecological and societal benefits of jellyfish. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 105–127CrossRefGoogle Scholar
  55. Durrmagel S et al (2010) Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J Biol Chem 285(16):11958–11965CrossRefGoogle Scholar
  56. Fang F et al (2017) A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine. J Fluid Mech 819:621–655CrossRefGoogle Scholar
  57. Feuda R et al (2014) The comb jelly opsins and the origins of animal phototransduction. Genome Biol Evol 6(8):1964–1971. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4159004&tool=pmcentrez&rendertype=abstract [Accessed January 29, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fossette S et al (2015) Report current-oriented swimming by jellyfish and its role in bloom maintenance current-oriented swimming by jellyfish and its role in bloom maintenance. Curr Biol 25(3):342–347.  https://doi.org/10.1016/j.cub.2014.11.050CrossRefPubMedGoogle Scholar
  59. Frank U, Plickert G, Müller WA (2009) Cnidarian interstitial cells: the dawn of stem. In: Rinkevich B, Matranga V (eds) Stem cells in marine organisms. Springer, Dordrecht, pp 33–59. http://link.springer.com/10.1007/978-90-481-2767-2 [Accessed January 11, 2015]CrossRefGoogle Scholar
  60. Fuchs B et al (2014) Regulation of polyp-to-jellyfish transition in Aurelia aurita. Curr Biol 24(3):263–273PubMedCrossRefGoogle Scholar
  61. Galliot B (2012) Hydra, a fruitful model system for 270 years. Int J Dev Biol 56(6–8):411–423PubMedCrossRefPubMedCentralGoogle Scholar
  62. Galliot B et al (2009) Origins of neurogenesis, a cnidarian view. Dev Biol 332(1):2–24. http://www.ncbi.nlm.nih.gov/pubmed/19465018 [Accessed January 29, 2015]PubMedCrossRefPubMedCentralGoogle Scholar
  63. Garcia Rodriguez J et al (2018) Gonad histology of box jellyfish (Cnidaria: Cubozoa) reveals variation between internal fertilizing species Alatina alata (Alatinidae) and Copula sivickisi (Tripedaliidae). J Morphol 279(6):841–856PubMedCrossRefPubMedCentralGoogle Scholar
  64. Garm A, Mori S (2009) Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish. J Exp Biol 212(Pt 24):3951–3960. http://www.ncbi.nlm.nih.gov/pubmed/19946073 [Accessed September 15, 2011]PubMedCrossRefGoogle Scholar
  65. Garm A, Coates MM et al (2007a) The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(5):547–557. http://www.ncbi.nlm.nih.gov/pubmed/17541674 [Accessed April 18, 2014]PubMedCrossRefPubMedCentralGoogle Scholar
  66. Garm A, O’Connor M et al (2007b) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210(Pt 20):3616–3623. http://www.ncbi.nlm.nih.gov/pubmed/17921163 [Accessed April 18, 2014]PubMedCrossRefPubMedCentralGoogle Scholar
  67. Garm A, Andersson F, Nilsson D-E (2008) Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Res 48(8):1061–1073. http://www.ncbi.nlm.nih.gov/pubmed/18308364 [Accessed April 18, 2014]PubMedCrossRefGoogle Scholar
  68. Garm A, Lebouvier M, Tolunay D (2015) Mating in the box jellyfish Copula sivickisi-novel function of cnidocytes. J Morphol 276(9):1055–1064. http://www.ncbi.nlm.nih.gov/pubmed/26010863 [Accessed June 4, 2015]PubMedCrossRefGoogle Scholar
  69. Garm A et al (2016) Hunting in bioluminescent light: vision in the nocturnal box jellyfish Copula sivickisi. Front Physiol 7(99):1–9. http://journal.frontiersin.org/Article/10.3389/fphys.2016.00099/abstractGoogle Scholar
  70. Gegenbaur C (1856) Versuch eines Systemes der Medusen, mit Beschreibung neuer oder wenig gekannter Formen; zugleich ein Beitrag zur Kenntniss der Fauna des Mittelmeeres. Zeitschrift für Wissenschaftliche Zoologie 8:202–273 Plates vii–xGoogle Scholar
  71. Gershwin L-A (2006) Nematocysts of the Cubozoa. Zootaxa 57:1–57Google Scholar
  72. Gershwin L-A, Collins AG (2002) A preliminary phylogeny of Pelagiidae (Cnidaria, Scyphozoa), with new observations of Chrysaora colorata comb. nov. J Nat Hist 36:127–148CrossRefGoogle Scholar
  73. Gibbons MJ et al (2010) Life cycle strategy, species richness and distribution in marine Hydrozoa (Cnidaria: Medusozoa). J Biogeogr 37:441–448CrossRefGoogle Scholar
  74. Gitter AH, Oliver D, Thurm U (1994) Calcium- and voltage-dependence of nematocyst discharge in Hydra vulgaris. J Comp Physiol A 175:115–122CrossRefGoogle Scholar
  75. Goodheart JA, Bely AE (2017) Sequestration of nematocysts by divergent cnidarian predators: mechanism, function, and evolution. Invertebr Biol 136:75–91CrossRefGoogle Scholar
  76. Graham WM, Bayha KM (2007) Biological invasions by marine jellyfish. In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 239–255. http://link.springer.com/10.1007/978-3-540-36920-2CrossRefGoogle Scholar
  77. Gravili C et al (2007) The life cycle of Gastroblasta raffaelei (Cnidaria, Hydrozoa, Leptomedusae, Campanulariidae) and a review of the genus Gastroblasta. Ital J Zool 74(4):395–403CrossRefGoogle Scholar
  78. Greenwood PG (2009) Acquisition and use of nematocysts by cnidarian predators. Toxicon 54(8):1065–1070.  https://doi.org/10.1016/j.toxicon.2009.02.029CrossRefPubMedPubMedCentralGoogle Scholar
  79. Haeckel E (1880) System der Acraspeden—Zweite Hälfte des Systems der Medusen. Denkschriften der Medizinisch—Naturwissenschaftlichen Gesellschaft zu Jena, GermanyGoogle Scholar
  80. Hartwick RF (1991) Observations on the anatomy, behaviour, reproduction and life cycle of the cubozoan Carybdea sivickisi. Hydrobiologia 216–217(1):171–179. http://link.springer.com/10.1007/BF00026459CrossRefGoogle Scholar
  81. He J et al (2015) Life Cycle Reversal in Aurelia sp. 1 (Cnidaria, Scyphozoa). PLoS One 1:1–14Google Scholar
  82. Helm RR et al (2015) Comparative muscle development of scyphozoan jellyfish with simple and complex life cycles. EvoDevo 6(1).  https://doi.org/10.1186/s13227-015-0005-7
  83. Helm RR (2018) Evolution and development of scyphozoan jellyfish. Biol Rev 93(2):1228–1250PubMedCrossRefGoogle Scholar
  84. Hickson SJ (1890) The Medusae of Millepora. Proc R Soc Lond Anniversary Meet IXVI(424):3–10Google Scholar
  85. Hirano YM, Hirano YJ, Yamada M (2000) Life in tidepools: distribution and abundance of two crawling hydromedusae, Staurocladia oahuensis and S . bilateralis, on a rocky intertidal shore in Kominato, central Japan. Scientia Marina 64:179–187CrossRefGoogle Scholar
  86. Hofmann DK, Neumann R, Henne K (1978) Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar Biol 47(2):161–176CrossRefGoogle Scholar
  87. Hofmann DK, Fitt WK, Fleck J (1996) Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish. Int J Dev Biol 40:331–338PubMedGoogle Scholar
  88. Holstein TW, Laudet V (2014) Life-history evolution: at the origins of metamorphosis. Curr Biol 24(4):R159–R161.  https://doi.org/10.1016/j.cub.2014.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  89. Horridge GA (1969) Statocysts of medusae and evolution of stereocilia. Tissue Cell 1(2):341–353PubMedCrossRefPubMedCentralGoogle Scholar
  90. Horridge GA, Chapman DM, MacKay B (1962) Naked axons and symmetrical synapses in an elementary nervous system. Nature 193:899–900PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hosia A, Stemmann L, Youngbluth M (2008) Distribution of net-collected planktonic cnidarians along the northern Mid-Atlantic Ridge and their associations with the main water masses. Deep Sea Res II 55:106–118CrossRefGoogle Scholar
  92. Houliston E, Momose T, Manuel M (2010) Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 26(4):159–167. http://www.ncbi.nlm.nih.gov/pubmed/20227783 [Accessed July 17, 2011]PubMedCrossRefGoogle Scholar
  93. Hoving HJT, Haddock SHD (2017) The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna. Nat Sci Rep 7(44952):1–4Google Scholar
  94. Hoyer B et al (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomaterialia 10:883–892.  https://doi.org/10.1016/j.actbio.2013.10.022CrossRefPubMedGoogle Scholar
  95. Hwang JS et al (2010) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci USA 107(43):18539–18544PubMedCrossRefGoogle Scholar
  96. Ikeda H, Ohtsu K, Uye S-I (2011) Fine structure, histochemistry, and morphogenesis during excystment of the podocysts of the giant jellyfish Nemopilema nomurai (Scyphozoa, Rhizostomeae). Biol Bull 221(3):248–260. http://www.ncbi.nlm.nih.gov/pubmed/22186913PubMedCrossRefGoogle Scholar
  97. Jankowski T, Collins AG, Campbell R (2008) Global diversity of inland water cnidarians. Hydrobiologia 595:35–40CrossRefGoogle Scholar
  98. Jarms G, Tiemann H, Båmstedt U (2002) Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar Biol 141(4):647–657. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00227-002-0858-x [Accessed August 17, 2011]CrossRefGoogle Scholar
  99. Jouiaei M, Yanagihara AA et al (2015a) Ancient venom systems: a review on Cnidaria toxins. Toxins 7(6):2251–2271. http://www.mdpi.com/2072-6651/7/6/2251/PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jouiaei M, Casewell NR et al (2015b) Firing the sting: chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom. Toxins 7(3):936–950. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4379534&tool=pmcentrez&rendertype=abstract [Accessed June 5, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  101. Juliano CE, Lin H, Steele RE (2014) Generation of transgenic Hydra by embryo microinjection. J Vis Exp (91):51888, 1–5. http://www.jove.com/video/51888/generation-of-transgenic-hydra-by-embryo-microinjection
  102. Junior V et al (2014) Identification of two novel cytolysins from the hydrozoan Olindias sambaquiensis (Cnidaria). J Venom Anim Toxins Incl Trop Dis 20(1):10. http://www.jvat.org/content/20/1/10PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kamran Z et al (2017) In vivo imaging of epithelial wound healing in the cnidarian Clytia hemisphaerica demonstrates early evolution of purse string and cell crawling closure mechanisms. BMC Dev Biol 17:1–14CrossRefGoogle Scholar
  104. Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol Part A 146:9–25CrossRefGoogle Scholar
  105. Kass-Simon G, Scappaticci AA Jr (2002) The behavioral and developmental physiology of nematocysts. Can J Zool 80(10):1772–1794CrossRefGoogle Scholar
  106. Katija K, Jiang H (2013) Swimming by medusae Sarsia tubulosa in the viscous vortex ring limit. Limnol Oceanogr 3:103–118CrossRefGoogle Scholar
  107. Katija K et al (2015) Ontogenetic propulsive transitions by Sarsia tubulosa medusae. J Exp Biol 218:2333–2343PubMedCrossRefGoogle Scholar
  108. Katsuki T, Greenspan RJ (2013) Jellyfish nervous systems. Curr Biol 23(14):R592–R594.  https://doi.org/10.1016/j.cub.2013.03.057PubMedCrossRefGoogle Scholar
  109. Khong NMH et al (2016) Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chem 196:953–960.  https://doi.org/10.1016/j.foodchem.2015.09.094CrossRefPubMedGoogle Scholar
  110. Kingsford M, Mooney CJ (2014) The ecology of box jellyfishes, Chapter 12, The ecology of box jellyfishes (Cubozoa). In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, DordrechtGoogle Scholar
  111. Knight C (1866) Natural history: or, second division of “The English encyclopedia”, vol 1. Evans, BradburyGoogle Scholar
  112. Kostrouch Z et al (1998) Retinoic acid X receptor in the diploblast, Tripedalia cystophora. Proc Natl Acad Sci USA 95(23):13442–13447PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kozmik Z et al (2003) Role of pax genes in eye evolution: a Cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5(5):773–785PubMedCrossRefPubMedCentralGoogle Scholar
  114. Kozmik Z, Ruzickova J et al (2008a) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci USA 105(26):8989–8993. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2449352&tool=pmcentrez&rendertype=abstractPubMedCrossRefPubMedCentralGoogle Scholar
  115. Kozmik Z, Swamynathan SK et al (2008b) Cubozoan crystallins: evidence for convergent evolution of pax regulatory sequences. Evol Dev 10(1):52–61PubMedCrossRefPubMedCentralGoogle Scholar
  116. Kraus JEM et al (2015) Adoption of conserved developmental genes in development and origin of the medusa body plan. EvoDevo 6(1). http://www.evodevojournal.com/content/6/1/23
  117. Krishnan S, Perumal P (2013) Preparation and biomedical characterization of jellyfish (Chrysaora quinquecirrha) collagen from southeast coast of India. Int J Pharm Pharm Sci 5(3):3–6Google Scholar
  118. Kuniyoshi HK et al (2012) Indomethacin induction of metamorphosis from the asexual stage to sexual stage in the moon jellyfish, Aurelia aurita. Biosci Biotechnol Biochem 76(7):1397–1400PubMedCrossRefPubMedCentralGoogle Scholar
  119. Lamarck JBPA de M (1801) Système des animaux sans vertèbres; ou, tableau général des classes, des ordres, et des genres de ces animaux... précdeé du discours d’ouverture du cours de zoologie, donné dans le Muséum national d’histoire naturelle l’an 8 de la RépubliqueGoogle Scholar
  120. Lasley RM et al (2016) First record of the box jellyfish Tripedalia cystophora (Cnidaria: Cubozoa: Tripedaliidae) in the Gulf of Mexico. Proc Biol Soc Wash 129(1):164–172. http://www.bioone.org/doi/10.2988/0006-324X-129.Q2.164CrossRefGoogle Scholar
  121. Lawley JW et al (2016) Box jellyfish Alatina alata has a circumtropical distribution. Biol Bull 231:152–169PubMedPubMedCentralCrossRefGoogle Scholar
  122. Leclère L, Röttinger E (2017) Diversity of cnidarian muscles: function, anatomy, development and regeneration. Front Cell Dev Biol 4(157):1–22Google Scholar
  123. Leone A et al (2013) Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar Drugs 11(5):1728–1762. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3707171&tool=pmcentrez&rendertype=abstract [Accessed January 20, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lesson R (1843) Historie naturelle des zoophytes. Acalèphes. Encyclopédique de Roret. Roret, ParisGoogle Scholar
  125. Lewis Ames C, Macrander J (2016) Evidence for an alternative mechanism of toxin production in the box jellyfish Alatina alata. Integr Comp Biol 56(5):973–988PubMedCrossRefGoogle Scholar
  126. Lewis Ames C et al (2016) A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata, an emerging model for studying venom, vision and sex. BMC Genomics 17(1):650.  https://doi.org/10.1186/s12864-016-2944-3CrossRefPubMedPubMedCentralGoogle Scholar
  127. Lewis C, Long TAF (2005) Courtship and reproduction in Carybdea sivickisi (Cnidaria: Cubozoa). Mar Biol 147(2):477–483. http://link.springer.com/10.1007/s00227-005-1602-0 [Accessed February 27, 2014]CrossRefGoogle Scholar
  128. Lewis C et al (2008) Sexually Dimorphic Cubomedusa Carybdea sivickisi (Cnidaria: Cubozoa) in Seto, Wakayama, JapanGoogle Scholar
  129. Lewis C et al (2012) On the occurrence of freshwater jellyfish in Japan 1928–2011: eighty-three years of records of mamizu kurage (Limnomedusae, Olindiidae). Proc Biol Soc Wash 125(2):165–179CrossRefGoogle Scholar
  130. Lewis C et al (2013) Redescription of Alatina alata (Reynaud, 1830) (Cnidaria: Cubozoa) from Bonaire, Dutch Caribbean. Zootaxa 3737(4):473–487PubMedPubMedCentralCrossRefGoogle Scholar
  131. Liegertová M et al (2015) Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci Rep 5:11885. http://www.nature.com/doifinder/10.1038/srep11885PubMedPubMedCentralCrossRefGoogle Scholar
  132. Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio dec., Laurentii SalviiGoogle Scholar
  133. Lotan T (2016) Leveraging nematocysts toward human care. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future : the world of Medusa and her sisters. Springer, Cham, pp 683–690CrossRefGoogle Scholar
  134. Lucas CH (1996) Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. J Plankton Res 18(6):987–1007CrossRefGoogle Scholar
  135. Lucas CH et al (2014) Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecol Biogeogr 23(7):701–714.  https://doi.org/10.1111/geb.12169CrossRefGoogle Scholar
  136. Mariottini GL (2014) Hemolytic venoms from marine cnidarian jellyfish—an overview. J Venom Res 5:22–32PubMedPubMedCentralGoogle Scholar
  137. Mariscal RN (1974) Nematocysts. In: Muscatine L, Lenoff H (eds) Coelenterate biology: reviews and new perspectives. Academic, New York, pp 129–178. https://www.mendeley.com/catalog/coelenterate-biology-reviews-new-perspectives/ [Accessed June 5, 2015]CrossRefGoogle Scholar
  138. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123(1):23–42CrossRefGoogle Scholar
  139. Marques AC, García J, Lewis Ames C (2015) Internal fertilization and sperm storage in cnidarians: a response to Orr and Brennan. Trends Ecol Evol 30(8):435–436. http://linkinghub.elsevier.com/retrieve/pii/S0169534715001408PubMedCrossRefGoogle Scholar
  140. Miglietta MP et al (2006) Species in the genus Turritopsis (Cnidaria, Hydrozoa): a molecular evaluation. J Zool Syst Evol Res 45(1):11–19CrossRefGoogle Scholar
  141. Mills CE (1983) Vertical migration and diel activity patterns of hydromedusae: studies in a large tank. J Plankton Res 5(5):619–635CrossRefGoogle Scholar
  142. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68CrossRefGoogle Scholar
  143. Minemizu R et al (2015) A photographic guide to the jellyfishes of Japan (in Japanese). Heibonshin, JapanGoogle Scholar
  144. Morandini AC, Marques AC (2010) Revision of the genus Chrysaora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa Monogr 2464:1–97Google Scholar
  145. Mortillaro JM et al (2009) Light intensity influences the production and translocation of fatty acids by zooxanthellae in the jellyfish Cassiopea sp. J Exp Mar Biol Ecol 378(1–2):22–30CrossRefGoogle Scholar
  146. Nakanishi N et al (2015) Gene expression data from the moon jelly, Aurelia, provide insights into the evolution of the combinatorial code controlling animal sense organ development A. Hejnol, ed. PLoS One 10(7):e0132544. http://dx.plos.org/10.1371/journal.pone.0132544PubMedPubMedCentralCrossRefGoogle Scholar
  147. Nath RD et al (2017) The jellyfish Cassiopea exhibits a sleep-like state. Curr Biol 27(19):2984–2990PubMedCrossRefPubMedCentralGoogle Scholar
  148. Nilsson D-E (2013) Eye evolution and its functional basis. Visual Neurosci 30(1–2):5–20. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3632888&tool=pmcentrez&rendertype=abstract [Accessed June 4, 2015]CrossRefGoogle Scholar
  149. Nilsson D-E et al (2005) Advanced optics in a jellyfish eye. Nature 435(7039):201–205PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ohdera AH et al (2018) Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system. Front Ecol Evol 6:35. https://www.frontiersin.org/articles/10.3389/fevo.2018.00035/full. Accessed 28 May 2018CrossRefGoogle Scholar
  151. Östman C (2000) A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar 64(1):31–46CrossRefGoogle Scholar
  152. Pia Miglietta M, Harilaos AL (2009) A silent invasion. Biol Invasions 11:825–834CrossRefGoogle Scholar
  153. Piatigorsky J et al (2001) J3-crystallin of the jellyfish lens: similarity to saposins. Proc Natl Acad Sci USA 98(22):12362–12367. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=60059&tool=pmcentrez&rendertype=abstractPubMedCrossRefGoogle Scholar
  154. Piraino S et al (2004) Reverse development in Cnidaria. Can J Zool Revue Canadienne De Zoologie 82(11):1748–1754CrossRefGoogle Scholar
  155. Plachetzki DC, Serb JM, Oakley TH (2005) New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol 20(9):465–467. http://www.ncbi.nlm.nih.gov/pubmed/16701418PubMedCrossRefPubMedCentralGoogle Scholar
  156. Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLoS One 2(10):e1054. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2013938&tool=pmcentrez&rendertype=abstract [Accessed January 25, 2015]PubMedPubMedCentralCrossRefGoogle Scholar
  157. Plachetzki DC, Fong CR, Oakley TH (2010) The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc R Soc B Biol Sci 277(1690):1963–1969. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2880087&tool=pmcentrez&rendertype=abstract [Accessed June 12, 2011]CrossRefGoogle Scholar
  158. Plachetzki DC, Fong CR, Oakley TH (2012) Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. BMC Biol 10(1):17. http://www.biomedcentral.com/1741-7007/10/17PubMedPubMedCentralCrossRefGoogle Scholar
  159. Ponce D et al (2015) Comparative study of the toxic effects of Chrysaora quinquecirrha (Cnidaria: Scyphozoa) and Chironex fleckeri (Cnidaria: Cubozoa) venoms using cell-based assays. Toxicon 106(February 2016):57–67PubMedCrossRefGoogle Scholar
  160. Prieto L et al (2010) Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5(11):e13793PubMedPubMedCentralCrossRefGoogle Scholar
  161. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu Rev Mar Sci 4(1):209–235CrossRefGoogle Scholar
  162. Purcell JE, Uye SI, Lo WT (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174CrossRefGoogle Scholar
  163. Purcell JE, Hoover RA, Schwarck NT (2009) Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Mar Ecol Prog Ser 375:139–149CrossRefGoogle Scholar
  164. Pustlauk W et al (2016) Jellyfish collagen and alginate: combined marine materials for superior chondrogenesis of hMSC. Mater Sci Eng C 64:190–198.  https://doi.org/10.1016/j.msec.2016.03.081CrossRefGoogle Scholar
  165. Quirin S et al (2016) Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy. Opt Lett 41(5):855. https://www.osapublishing.org/abstract.cfm?URI=ol-41-5-855PubMedPubMedCentralCrossRefGoogle Scholar
  166. Rachamim T et al (2014) The dynamically evolving nematocyst content of an anthozoan, a scyphozoan, and a hydrozoan. Mol Biol Evol 32(3):740–753. http://mbe.oxfordjournals.org/cgi/doi/10.1093/molbev/msu335PubMedCrossRefGoogle Scholar
  167. Reft AJ, Daly M (2012) Morphology, distribution, and evolution of apical structure of nematocysts in Hexacorallia. J Morphol 273(2):121–136PubMedCrossRefGoogle Scholar
  168. Rentzsch F, Layden M, Manuel M (2016) The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdiscip Rev Dev Biol 1–20Google Scholar
  169. Ristroph L, Childress S (2014) Stable hovering of a jellyfish-like flying machine. J R Soc Interface 11:20130992PubMedPubMedCentralCrossRefGoogle Scholar
  170. Rossetto AL et al (2009) Seabather’s eruption: a clinical and epidemiological study of 38 cases in Santa Catarina State, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 51(3):169–175. http://www.scopus.com/inward/record.url?eid=2-s2.0-67650073114&partnerID=tZOtx3y1PubMedCrossRefPubMedCentralGoogle Scholar
  171. Russell FS (1953) The Medusae of the British Isles. Vol. I: Anthomedusae, Leptomedusae, Limnomedusae, Trachymedusae, and Narcomedusae. Cambridge University Press, Cambridge. http://www.mba.ac.uk/NMBL/publications/medusae_1/medusae_1.htm
  172. Ryan JF et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science (New York, NY) 342(6164):1242592. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3920664&tool=pmcentrez&rendertype=abstract [Accessed July 9, 2014]CrossRefGoogle Scholar
  173. Sanders SM, Shcheglovitova M, Cartwright P (2014) Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria). BMC Genomics 15(1):406. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4072882&tool=pmcentrez&rendertype=abstractPubMedPubMedCentralCrossRefGoogle Scholar
  174. Sang L et al (2011) Fabrication and evaluation of biomimetic scaffolds by using collagen–alginate fibrillar gels for potential tissue engineering applications. Mater Sci Eng C 31:262–271.  https://doi.org/10.1016/j.msec.2010.09.008CrossRefGoogle Scholar
  175. Satterlie RA (2002) Neuronal control of swimming in jellyfish : a comparative story. Can J Zool 80:1654–1669CrossRefGoogle Scholar
  176. Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214:1215–1223. http://www.ncbi.nlm.nih.gov/pubmed/21430196 [Accessed April 8, 2014]PubMedCrossRefPubMedCentralGoogle Scholar
  177. Satterlie RA, Thomas KS, Gray GC (2005) Muscle organization of the cubozoan jellyfish Tripedalia cystophora Conant 1897. Biol Bull 209(2):154–163. http://www.ncbi.nlm.nih.gov/pubmed/16260775PubMedCrossRefGoogle Scholar
  178. Schiariti A et al (2012) Reproductive biology of Lychnorhiza lucerna (Cnidaria: Scyphozoa: Rhizostomeae): individual traits related to sexual reproduction. Mar Biol Res 8(3):255–264CrossRefGoogle Scholar
  179. Schroth W et al (2002) Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evol Biol 2:1. http://www.biomedcentral.com/1471-2148/2/1PubMedPubMedCentralCrossRefGoogle Scholar
  180. Schroth W, Ender A, Schierwater B (2005) Molecular biomarkers and adaptation to environmental stress in moon jelly (Aurelia spp.). Mar Biotechnol 7(5):449–461PubMedCrossRefGoogle Scholar
  181. Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282(1):14–26PubMedCrossRefGoogle Scholar
  182. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217(1):3–15CrossRefGoogle Scholar
  183. Solé M et al (2016) Evidence of cnidarians sensitivity to sound after exposure to low frequency noise underwater sources. Sci Rep 6(37979):1–16.  https://doi.org/10.1038/srep37979Google Scholar
  184. Soong K, Cho LC (1998) Synchronized release of medusae from three species of hydrozoan fire corals. Coral Reefs 17:145–154CrossRefGoogle Scholar
  185. Stampar SN et al (2015) Drifting in the oceans: Isarachnanthus nocturnus (Cnidaria, Ceriantharia, Arachnactidae), an anthozoan with an extended planktonic stage. Mar Biol 162:2161–2169CrossRefGoogle Scholar
  186. Starcevic A, Long PF (2013) Diversification of animal venom peptides-were jellyfish amongst the first combinatorial chemists? ChemBioChem 14(12):1407–1409PubMedCrossRefGoogle Scholar
  187. Stewart SE (1996) Field behavior of Tripedalia cystophora (class Cubozoa). Mar Freshw Behav Physiol 27:175–188CrossRefGoogle Scholar
  188. Straehler-Pohl I (2017) Cubozoa and Scyphozoa: the results of 20 years of scyphozoan life cycle research with new results on cubozoan life cycles to suggest a new nomenclature referring to both classes. In: Toyokawa M, Miyake H, Nishikawa J (eds) Frontiers in ecological studies of jellyfish. Seibutsu Kenkyu Sha Co. Ltd. (Organisms Research Co. Ltd.), Tokyo, pp 17–29Google Scholar
  189. Straehler-Pohl I, Jarms G (2005) Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Mar Biol 147(6):1271–1277. http://link.springer.com/10.1007/s00227-005-0031-4. Accessed 18 April 2014CrossRefGoogle Scholar
  190. Stretch JJ, King JM (1980) Direct fission: an undescribed reproductive method in hydromedusae. Bull Mar Sci 30(2):522–525Google Scholar
  191. Suga H et al (2010) Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci USA 107(32):14263–14268PubMedCrossRefGoogle Scholar
  192. Technau U, Schwaiger M (2015) Marine genomics recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 24:131–138.  https://doi.org/10.1016/j.margen.2015.09.007CrossRefPubMedGoogle Scholar
  193. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development (Cambridge, England) 138(8):1447–1458. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3062418&tool=pmcentrez&rendertype=abstract [Accessed January 10, 2015]CrossRefGoogle Scholar
  194. Thiebot J-B et al (2017) Jellyfish and other gelata as food for four penguin species—insights from predator-borne videos. Front Ecol Environ 15(8):437–441CrossRefGoogle Scholar
  195. Thiel M (1936) Scyphomedusae: Cubomedusae. H.G. Bronns Klassen und Ordnungen des Tierreichs. Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 2:179–308Google Scholar
  196. Thuesen EV, Mccullough KD, Childress JJ (2005) Metabolic enzyme activities in swimming muscle of medusae : is the scaling of glycolytic activity related to oxygen availability ? J Mar Biol UK 85:603–611CrossRefGoogle Scholar
  197. Toshino S (2014) Development of Copula sivickisi (Stiasny, 1926) (Cnidaria : Cubozoa: Carybdeidae: Tripedaliidae) collected from the Ryukyu Archipelago, Southern Japan. Plankton Benthos Res 9(1):32–41CrossRefGoogle Scholar
  198. Toshino S et al (2013) Development and polyp formation of the giant box jellyfish Morbakka virulenta (Kishinouye, 1910) (Cnidaria: Cubozoa) collected from the Seto Inland Sea, Western Japan. Plankton Benthos Res 8(1):1–8. http://jlc.jst.go.jp/DN/JST.JSTAGE/pbr/8.1?lang=en&from=CrossRef&type=abstractCrossRefGoogle Scholar
  199. Toshino S, Miyake H, Ohtsuka S et al (2015a) Monodisc strobilation in Japanese giant box jellyfish Morbakka virulenta (Kishinouye, 1910): a strong implication of phylogenetic similarity between Cubozoa and Scyphozoa. Evol Dev 17(4):231–239. http://doi.wiley.com/10.1111/ede.12127PubMedCrossRefPubMedCentralGoogle Scholar
  200. Toshino S, Miyake H, Shibata H (2015) Meteorona kishinouyei, a new family, genus and species (Cnidaria, Cubozoa, Chirodropida) from Japanese waters. ZooKeys 503:1–21. http://zookeys.pensoft.net/articles.php?id=5251CrossRefGoogle Scholar
  201. University of Texas at Dallas & Festo (2009) Robot jellyfish. Printed Electronics World. https://www.printedelectronicsworld.com/articles/1667/robot-jellyfish [Accessed December 9, 2017].
  202. Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomim 6(3):036004PubMedCrossRefGoogle Scholar
  203. Vodopivec M, Peliz ÁJ, Malej A (2017) Offshore marine constructions as propagators of moon jellyfish dispersal. Environ Res Lett 12:84003CrossRefGoogle Scholar
  204. Watanabe H, Fujisawa T, Holstein TW (2009) Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ 51(3):167–183PubMedCrossRefGoogle Scholar
  205. Weill R (1934) Contribution a l’etude des cnidaires et de leurs nematocystes II. Valeur taxonomique du cnidome. Travaux de la Station Zoologique de Wimereux 11:351–701Google Scholar
  206. Wenger Y, Galliot B (2013) RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome. BMC Genomics 14(1):204. https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-14-204. Accessed 28 May 2018PubMedPubMedCentralCrossRefGoogle Scholar
  207. Weston AJ et al (2013) Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon 71:11–17. http://www.ncbi.nlm.nih.gov/pubmed/23688393. Accessed 30 May 2015PubMedCrossRefGoogle Scholar
  208. Wrobel D, Mills C (1998) Pacific coast pelagic invertebrates : a guide to the common gelatinous animals. Bertsch H (ed) Sea Challengers, Monterey, CAGoogle Scholar
  209. Yamamori L et al (2017) Comparison of the inducing effect of indole compounds on Medusa formation in different classes of Medusozoa. Zool Sci 34(3):173–178. http://www.bioone.org/doi/abs/10.2108/zs160161?journalCode=jzoo. Accessed 28 May 2018PubMedCrossRefGoogle Scholar
  210. You K et al (2008) The effects of temperature decrease on the Scyphistomae strobilation of jellyfish, Rhopilema esculentum Kishinouye. J World Aquacult Soc 39(5):706–711CrossRefGoogle Scholar
  211. Zapata F et al (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10(10):e0139068. http://dx.plos.org/10.1371/journal.pone.0139068PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Invertebrate ZoologyNational Museum of Natural History, Smithsonian InstitutionWashington, DCUSA

Personalised recommendations