Vision Made Easy: Cubozoans Can Advance Our Understanding of Systems-Level Visual Information Processing

  • Jan Bielecki
  • Anders Garm
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


Animals relying on vision as their main sensory modality reserve a large part of their central nervous system to appropriately navigate their environment. In general, neural involvement correlates to the complexity of the visual system and behavioural repertoire. In humans, one third of the available neural capacity supports our single-chambered general-purpose eyes, whereas animals with less elaborate visual systems need less computational power, and generally have smaller brains, and thereby lack in visual behaviour. As a consequence, both traditional model animals (mice, zebrafish, and flies) and more experimentally tractable animals (Hydra, Planaria, and C. elegans) cannot contribute to our understanding of systems-level visual information processing—a Goldilocks case of too big and too small.

However, one animal, the box jellyfish Tripedalia cystophora, possesses a rather complex visual system, displays multiple visual behaviours, yet processes visual information by means of a relatively simple central nervous system. This—just right—model system could not only provide information on how visual stimuli are processed through distinct combinations of neural circuitry but also provide a processing algorithm for extracting specific information from a complex visual scene.



The authors are indebted to Dan-Eric Nilsson for helping with the figures and continuous scientific insights.

This project was funded by the Cluster of Excellence ‘The Future Ocean’. ‘The Future Ocean’ is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. JB acknowledges Danish Independent Research Grant no. DFF—1325-00146. AG acknowledges DFF—4181-00398.


  1. Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477CrossRefGoogle Scholar
  2. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420CrossRefGoogle Scholar
  3. Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649CrossRefGoogle Scholar
  4. Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2CrossRefGoogle Scholar
  5. Alford SC, Wu J, Zhao Y, Campbell RE, Knöpfel T (2013) Optogenetic reporters. Biol Cell 105:14–29CrossRefGoogle Scholar
  6. Anderson PA, Grünert U (1988) Three-dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata. Synapse 2:606–613CrossRefGoogle Scholar
  7. Bielecki J, Høeg JT, Garm A (2013a) Fixational eye movements in the earliest stage of metazoan evolution. PLoS One 8:e66442CrossRefGoogle Scholar
  8. Bielecki J, Nachman G, Garm A (2013b) Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:785–797CrossRefGoogle Scholar
  9. Bielecki J, Zaharoff AK, Leung NY, Garm A, Oakley TH (2014) Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa). PLoS One 9:e98870CrossRefGoogle Scholar
  10. Briggman KL, Abarbanel HD, Kristan WB (2005) Optical imaging of neuronal populations during decision-making. Science 307:896–901CrossRefGoogle Scholar
  11. Buskey E (2003) Behavioral adaptations of the cubozoan medusa Tripedalia cystophora for feeding on copepod (Dioithona oculata) swarms. Mar Biol 142:225–232CrossRefGoogle Scholar
  12. Coates MM, Garm A, Theobald JC, Thompson SH, Nilsson DE (2006) The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J Exp Biol 209:3758–3765CrossRefGoogle Scholar
  13. De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98CrossRefGoogle Scholar
  14. Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498CrossRefGoogle Scholar
  15. Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151CrossRefGoogle Scholar
  16. Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5:285–297CrossRefGoogle Scholar
  17. Garm A, Bielecki J (2008) Swim pacemakers in box jellyfish are modulated by the visual input. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:641–651CrossRefGoogle Scholar
  18. Garm A, Ekström P (2010) Evidence for multiple photosystems in jellyfish. Int Rev Cell Mol Biol 280:41–78CrossRefGoogle Scholar
  19. Garm A, Mori S (2009) Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish. J Exp Biol 212:3951–3960CrossRefGoogle Scholar
  20. Garm A, Ekström P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325:333–343CrossRefGoogle Scholar
  21. Garm A, Coates MM, Gad R, Seymour J, Nilsson DE (2007a) The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:547–557CrossRefGoogle Scholar
  22. Garm A, Poussart Y, Parkefelt L, Ekström P, Nilsson DE (2007b) The ring nerve of the box jellyfish Tripedalia cystophora. Cell Tissue Res 329:147–157CrossRefGoogle Scholar
  23. Garm A, O’Connor M, Parkefelt L, Nilsson DE (2007c) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210:3616–3623CrossRefGoogle Scholar
  24. Garm A, Andersson F, Nilsson Dan-E (2008) Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Research 48 (8):1061–1073CrossRefGoogle Scholar
  25. Garm A, Oskarsson M, Nilsson DE (2011) Box jellyfish use terrestrial visual cues for navigation. Curr Biol 21:798–803CrossRefGoogle Scholar
  26. Garm A, Bielecki J, Petie R, Nilsson DE (2012) Opposite patterns of diurnal activity in the box jellyfish Tripedalia cystophora and Copula sivickisi. Biol Bull 222:35–45CrossRefGoogle Scholar
  27. Garm A, Hedal I, Islin M, Gurska D (2013) Pattern- and contrast-dependent visual response in the box jellyfish Tripedalia cystophora. J Exp Biol 216:4520–4529CrossRefGoogle Scholar
  28. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528CrossRefGoogle Scholar
  29. Gray GC, Martin VJ, Satterlie RA (2009) Ultrastructure of the retinal synapses in cubozoans. Biol Bull 217:35–49CrossRefGoogle Scholar
  30. Ijspeert AJ (2008) 2008 Special issue: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653CrossRefGoogle Scholar
  31. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111CrossRefGoogle Scholar
  32. Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol A Mol Integr Physiol 146:9–25CrossRefGoogle Scholar
  33. Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A (2008) Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci U S A 105:15576–15580CrossRefGoogle Scholar
  34. Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Strnad H, Kawamura S, Piatigorsky J, Paces V, Vlcek C (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A 105:8989–8993CrossRefGoogle Scholar
  35. Land MF (1999) Motion and vision: why animals move their eyes. J Comp Physiol A 185:341–352CrossRefGoogle Scholar
  36. Land MF, Nilsson D-E (2012) Animal eyes. Oxford University Press, New YorkCrossRefGoogle Scholar
  37. Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–470CrossRefGoogle Scholar
  38. Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19:1142–1153CrossRefGoogle Scholar
  39. Mackie G, Meech R (1995a) Central circuitry in the jellyfish Aglantha. I: The relay system. J Exp Biol 198:2261–2270PubMedGoogle Scholar
  40. Mackie G, Meech R (1995b) Central circuitry in the jellyfish Aglantha. II: The ring giant and carrier systems. J Exp Biol 198:2271–2278PubMedGoogle Scholar
  41. Mackie GO, Anderson PAV, Ssingla CL (1984) Apparent absence of gap junctions in two classes of cnidaria. Biol Bull 167:120–123CrossRefGoogle Scholar
  42. Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699CrossRefGoogle Scholar
  43. Matthews HR, Murphy RLW, Fain GL, Lamb TD (1988) Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334:67–69CrossRefGoogle Scholar
  44. Morgan PT, Perrins R, Lloyd PE, Weiss KR (2000) Intrinsic and extrinsic modulation of a single central pattern generating circuit. J Neurophysiol 84:1186–1193CrossRefGoogle Scholar
  45. Mundell NA, Beier KT, Pan YA, Lapan SW, Göz Aytürk D, Berezovskii VK, Wark AR, Drokhlyansky E, Bielecki J, Born RT, Schier AF, Cepko CL (2015) Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. J Comp Neurol 523:1639–1663CrossRefGoogle Scholar
  46. Nilsson DE (2004) Eye evolution: a question of genetic promiscuity. Curr Opin Neurobiol 14:407–414CrossRefGoogle Scholar
  47. Nilsson DE, Gislén L, Coates MM, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205CrossRefGoogle Scholar
  48. Nusbaum MP, Blitz DM (2012) Neuropeptide modulation of microcircuits. Curr Opin Neurobiol 22:592–601CrossRefGoogle Scholar
  49. O’Connor M, Nilsson DE, Garm A (2010) Temporal properties of the lens eyes of the box jellyfish Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:213–220CrossRefGoogle Scholar
  50. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214CrossRefGoogle Scholar
  51. Parkefelt L, Ekström P (2009) Prominent system of RFamide immunoreactive neurons in the rhopalia of box jellyfish (Cnidaria: Cubozoa). J Comp Neurol 516:157–165CrossRefGoogle Scholar
  52. Petie R, Garm A, Nilsson DE (2011) Visual control of steering in the box jellyfish Tripedalia cystophora. J Exp Biol 214:2809–2815CrossRefGoogle Scholar
  53. Petie R, Garm A, Nilsson D-E (2013) Contrast and rate of light intensity decrease control directional swimming in the box jellyfish Tripedalia cystophora (Cnidaria, Cubomedusae). Hydrobiologia 703:69–77CrossRefGoogle Scholar
  54. Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLoS One 2:e1054CrossRefGoogle Scholar
  55. Plickert G, Schneider B (2004) Neuropeptides and photic behavior in Cnidaria. Hydrobiologia 530–531:49–57Google Scholar
  56. Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol 133:357–367CrossRefGoogle Scholar
  57. Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669CrossRefGoogle Scholar
  58. Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214:1215–1223CrossRefGoogle Scholar
  59. Schall JD (2001) Neural basis of deciding, choosing and acting. Nat Rev Neurosci 2:33–42CrossRefGoogle Scholar
  60. Shorten M, Seymour JE, Cross MC, Carette TJ, Woodward G, Cross TF (2005) J Zool 267:371–381CrossRefGoogle Scholar
  61. Skogh C, Garm A, Nilsson DE, Ekström P (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 267:1391–1405CrossRefGoogle Scholar
  62. Stöckl AL, Petie R, Nilsson DE (2011) Setting the pace: new insights into central pattern generator interactions in box jellyfish swimming. PLoS One 6:e27201CrossRefGoogle Scholar
  63. St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17:884–889CrossRefGoogle Scholar
  64. Suga H, Schmid V, Gehring WJ (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18:51–55CrossRefGoogle Scholar
  65. Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 1097:40–50CrossRefGoogle Scholar
  66. Terakita A (2005) The opsins. Genome Biol 6:213CrossRefGoogle Scholar
  67. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: an unexpected complexity. Nat Rev Neurosci 15:327–335CrossRefGoogle Scholar
  68. Wehner R (1987) ‘Matched filters’ – neural models of the external world. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 161:511–531CrossRefGoogle Scholar
  69. Yamasu T, Yoshida M (1976) Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res 170:325–339CrossRefGoogle Scholar
  70. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR (2016) Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166:245–257CrossRefGoogle Scholar
  71. Yatsu N (1917) Notes on the physiology of Carybdea rastonii. J Coll Sci Tokyo Imp Univ 40:1–12Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GEOMAR – Helmholtz Centre for Ocean ResearchKielGermany
  2. 2.Institute of PhysiologyChristian Albrechts UniversityKielGermany
  3. 3.Marine Biological SectionUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations