Advertisement

Octopus vulgaris: An Alternative in Evolution

  • Anna Di Cosmo
  • Valeria Maselli
  • Gianluca Polese
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

Octopus vulgaris underwent a radical modification to cope with the benthic lifestyle. It diverged from other cephalopods in terms of body plan, anatomy, behavior, and intelligence. It independently evolved the largest and most complex nervous system and sophisticated behaviors among invertebrates in a separate evolutionary lineage. It is equipped with unusual traits that confer it an incredible evolutionary success: arms capable of a wide range of movements with no skeletal support; developed eyes with a complex visual behavior; vestibular system; primitive “hearing” system; chemoreceptors located in epidermis, suckers, and mouth; and a discrete olfactory organ. As if these were not enough, the occurrence of recently discovered adult neurogenesis and the high level of RNA editing give it a master key to face environmental challenges. Here we provide an overview of some of the winning evolutionary inventions that octopus puts in place such as the capacity to see color, smell by touch, edit own genes, and rejuvenate own brain.

Keywords

Octopus vulgaris Adult neurogenesis Evolution Chemoreception RNA editing 

Notes

Acknowledgment

We would like to acknowledge Single Center Research Grant in Neuroscience from Compagnia di San Paolo (Protocol 29-11).

References

  1. Akkaynak D, Allen JJ, Mathger LM, Chiao CC, Hanlon RT (2013) Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(3):211–225.  https://doi.org/10.1007/s00359-012-0785-3CrossRefPubMedGoogle Scholar
  2. Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR, Di Cristo C, Dilkes BP, Edsinger-Gonzales E, Freeman RM, Hanlon RT, Koenig KM, Lindgren AR, Martindale MQ, Minx P, Moroz LL, Nödl M-T, Nyholm SV, Ogura A, Pungor JR, Rosenthal JJC, Schwarz EM, Shigeno S, Strugnell JM, Wollesen T, Zhang G, Ragsdale CW (2012) Cephalopod genomics: a plan of strategies and organization. Stand Genomic Sci 7(1):175–188.  https://doi.org/10.4056/sigs.3136559CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altman JS (1971) Control of accept and reject reflexes in the octopus. Nature 229(5281):204–206CrossRefPubMedGoogle Scholar
  4. Anraku K, Archdale MV, Hatanaka K, Marui T (2005) Chemical stimuli and feeding behavior in octopus, Octopus vulgaris. Phuket Mar Biol Center Bull 66:221–227Google Scholar
  5. Baratte S, Bonnaud L (2009) Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 517(4):539–549.  https://doi.org/10.1002/cne.22174CrossRefPubMedGoogle Scholar
  6. Basil JA, Hanlon RT, Sheikh SI, Atema J (2000) Three-dimensional odor tracking by Nautilus pompilius. J Exp Biol 203(Pt 9):1409–1414PubMedGoogle Scholar
  7. Bertapelle C, Polese G, Di Cosmo A (2017) Enriched environment increases PCNA and PARP1 levels in Octopus vulgaris central nervous system: first evidence of adult neurogenesis in Lophotrochozoa. J Exp Zool B Mol Dev Evol 328:347–359.  https://doi.org/10.1002/jez.b.22735CrossRefPubMedGoogle Scholar
  8. Boal JG (1996) A review of simultaneous visual discrimination as a method of training octopuses. Biol Rev Camb Philos Soc 71(2):157–190CrossRefPubMedGoogle Scholar
  9. Boal JG, Wittenberg KM, Hanlon RT (2000) Observational learning does not explain improvement in predation tactics by cuttlefish (Mollusca: Cephalopoda). Behav Processes 52(2-3):141–153CrossRefPubMedGoogle Scholar
  10. Boycott BB, Young JZ (1956) Reaction to shape in Octopus vulgaris Lamarck. Proc Zool Soc Lond 126(4):491–547.  https://doi.org/10.1111/j.1096-3642.1956.tb00451.xCrossRefGoogle Scholar
  11. Boyle PR (1983) Ventilation rate and arousal in the octopus. J Exp Mar Biol Ecol 69:129–136.  https://doi.org/10.1016/0022-0981(83)90062-XCrossRefGoogle Scholar
  12. Brown PK, Brown PS (1958) Visual pigments of the octopus and cuttlefish. Nature 182:1288.  https://doi.org/10.1038/1821288a0CrossRefPubMedGoogle Scholar
  13. Budelmann BU (1995) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser Vergal, BaselGoogle Scholar
  14. Budelmann BU (1996) Active marine predators: the sensory world of cephalopods. Mar Freshw Behav Physiol 27:59–75.  https://doi.org/10.1080/10236249609378955CrossRefGoogle Scholar
  15. Budelmann BU, Williamson R (1994) Directional sensitivity of hair cell afferents in the Octopus statocyst. J Exp Biol 187:245–259PubMedGoogle Scholar
  16. Buresch KC, Ulmer KM, Akkaynak D, Allen JJ, Mäthger LM, Nakamura M, Hanlon RT (2015) Cuttlefish adjust body pattern intensity with respect to substrate intensity to aid camouflage, but do not camouflage in extremely low light. J Exp Mar Biol Ecol 462:121–126.  https://doi.org/10.1016/j.jembe.2014.10.017CrossRefGoogle Scholar
  17. Buresi A, Croll RP, Tiozzo S, Bonnaud L, Baratte S (2014) Emergence of sensory structures in the developing epidermis in Sepia officinalis and other coleoid cephalopods. J Comp Neurol 522(13):3004–3019.  https://doi.org/10.1002/cne.23562CrossRefPubMedGoogle Scholar
  18. Burghardt GM (2005) The genesis of animal play: testing the limits. Mit Press, CambridgeGoogle Scholar
  19. Cayre M, Strambi C, Charpin P, Augier R, Meyer MR, Edwards JS, Strambi A (1996) Neurogenesis in adult insect mushroom bodies. J Comp Neurol 371(2):300–310.  https://doi.org/10.1002/(SICI)1096-9861(19960722)371:2<300::AID-CNE9>3.0.CO;2-6CrossRefPubMedGoogle Scholar
  20. Chiao CC, Wickiser JK, Allen JJ, Genter B, Hanlon RT (2011) Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc Natl Acad Sci USA 108(22):9148–9153.  https://doi.org/10.1073/pnas.1019090108CrossRefPubMedGoogle Scholar
  21. Cummins SF, Boal JG, Buresch KC, Kuanpradit C, Sobhon P, Holm JB, Degnan BM, Nagle GT, Hanlon RT (2011) Extreme aggression in male squid induced by a beta-MSP-like pheromone. Curr Biol 21(4):322–327.  https://doi.org/10.1016/j.cub.2011.01.038CrossRefPubMedGoogle Scholar
  22. Di Cosmo A, Polese G (2014) Cephalopods meet neuroecology: the role of chemoreception in Octopus vulgaris reproductive behaviour. In: Di Cosmo A, Winlow W (eds) Neuroecology and neuroethology in Molluscs—the interface between behaviour and environment. NOVA Science Publisher, Hauppauge, NY, pp 117–132Google Scholar
  23. Di Cosmo A, Polese G (2016) Neuroendocrine-immune systems response to environmental stressors in the cephalopod Octopus vulgaris. Front Physiol 7:434.  https://doi.org/10.3389/fphys.2016.00434CrossRefPubMedPubMedCentralGoogle Scholar
  24. Di Cosmo A, Polese G (2017) Cephalopod olfaction, vol 1. Oxford University Press.  https://doi.org/10.1093/acrefore/9780190264086.013.185
  25. Doubleday ZA, Prowse TAA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, Lourenço S, Quetglas A, Sauer W, Gillanders BM (2016) Global proliferation of cephalopods. Curr Biol 26(10):R406–R407.  https://doi.org/10.1016/j.cub.2016.04.002CrossRefPubMedGoogle Scholar
  26. Emery DG (1975) Ciliated sensory neurons in the lip of the squid Lolliguncula brevis Blainville. Cell Tissue Res 157(3):323–329.  https://doi.org/10.1007/BF00225523CrossRefPubMedGoogle Scholar
  27. Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D’Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebr Neurosci 14(1):13–36.  https://doi.org/10.1007/s10158-013-0165-xCrossRefGoogle Scholar
  28. Fröhlich FW (1913a) Beiträge zur allgemeinen Physiologie der Sinnesorgane. Ztschr Sinnesphysiol 48:28–164Google Scholar
  29. Fröhlich FW (1913b) Vergleichende Untersuchungen über den Lichtund Farbensinn. Dt Med Wschr 30:1–11Google Scholar
  30. Garrett S, Rosenthal JJC (2012) RNA editing underlies temperature adaptation in K(+) channels from polar octopuses. Science 335(6070):848–851CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gilly WF, Lucero MT (1992) Behavioral responses to chemical stimulation of the olfactory organ in the squid Loligo opalescens. J Exp Biol 162(1):209–229Google Scholar
  32. Giordano G, Carbone M, Ciavatta ML, Silvano E, Gavagnin M, Garson MJ, Cheney KL, Mudianta IW, Russo GF, Villani G, Magliozzi L, Polese G, Zidorn C, Cutignano A, Fontana A, Ghiselin MT, Mollo E (2017) Volatile secondary metabolites as aposematic olfactory signals and defensive weapons in aquatic environments. Proc Natl Acad Sci USA 114(13):3451–3456.  https://doi.org/10.1073/pnas.1614655114CrossRefPubMedGoogle Scholar
  33. Godfrey-Smith P (2013) Cephalopods and the evolution of the mind. Pac Conserv Biol 19(1):4–9.  https://doi.org/10.1071/PC130004CrossRefGoogle Scholar
  34. Graziadei P (1962) Receptors in the suckers of octopus. Nature 195:57.  https://doi.org/10.1038/195057a0CrossRefGoogle Scholar
  35. Graziadei PPC (1971) The nervous system of the arms. In: Young JZ (ed) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, OxfordGoogle Scholar
  36. Graziadei PPC, Gagne HT (1976) Sensory innervation in the rim of the octopus sucker. J Morphol 150:639–680CrossRefPubMedGoogle Scholar
  37. Grenacher H (1884) Abhandlungen zur vergleichenden Anatomie des Auges. I. Die Retina der Cephalopoden. Abhandl Naturforsch Ges Halle 16:1–50Google Scholar
  38. Gutnick T, Byrne RA, Hochner B, Kuba M (2011) Octopus vulgaris uses visual information to determine the location of its arm. Curr Biol 21(6):460–462.  https://doi.org/10.1016/j.cub.2011.01.052CrossRefPubMedGoogle Scholar
  39. Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, CambridgeGoogle Scholar
  40. Hanlon RT, Chiao C-C, Mäthger LM, Marshall NJ (2013) A fish-eye view of cuttlefish camouflage using in situ spectrometry. Biol J Linn Soc 109(3):535–551.  https://doi.org/10.1111/bij.12071CrossRefGoogle Scholar
  41. Hess C (1902) Über das Vorkommen von Sehpurpur bei Cephalopoden. Centralbl Physiol 16:91Google Scholar
  42. Hess C (1905) Beiträge zur Physiologie und Anatomie des Cephalopodenauges. Archiv für die gesamte Physiologie des Menschen und der Tiere 109(9):393–439.  https://doi.org/10.1007/BF01677979CrossRefGoogle Scholar
  43. Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22(20):R887–R892.  https://doi.org/10.1016/j.cub.2012.09.001CrossRefPubMedGoogle Scholar
  44. Hochner B (2013) How nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs. Brain Behav Evol 82(1):19–30.  https://doi.org/10.1159/000353419CrossRefPubMedGoogle Scholar
  45. Hochner B, Brown ER, Langella M, Shomrat T, Fiorito G (2003) A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90(5):3547–3554.  https://doi.org/10.1152/jn.00645.2003CrossRefPubMedGoogle Scholar
  46. Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210(3):308–317.  https://doi.org/10.2307/4134567CrossRefPubMedGoogle Scholar
  47. Hu MY, Yan HY, Chung WS, Shiao JC, Hwang PP (2009) Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach. Comp Biochem Physiol A Mol Integr Physiol 153(3):278–283.  https://doi.org/10.1016/j.cbpa.2009.02.040CrossRefPubMedGoogle Scholar
  48. Hubbard SJ (1960) Hearing and the octopus statocyst. J Exp Biol 37(4):845–853Google Scholar
  49. Huffard CL (2013) Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr Neurosci 13(1):11–18.  https://doi.org/10.1007/s10158-013-0147-zCrossRefGoogle Scholar
  50. Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, Wolf SA (2010) Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci 4:189.  https://doi.org/10.3389/fnins.2010.00189CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kroger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules: extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. Bioessays 33(8):602–613.  https://doi.org/10.1002/bies.201100001CrossRefPubMedGoogle Scholar
  52. Kuba M, Meisel DV, Byrne RA, Griebel U, Mather JA (2003) Looking at play in Octopus vulgaris. Berliner Paläontologische Abhandlungen 3:163–169Google Scholar
  53. Kuba MJ, Gutnick T, Burghardt GM (2014) Learning from play in octopus. In: Darmaillacq A-S, Dickel L, Mather J (eds) Cephalopod cognition. Cambridge University Press, Cambridge, pp 57–67CrossRefGoogle Scholar
  54. Kühn A (1930) Über Farbensinn und Anpassung der Körperfarbe an die Umgebung bei Tintenfischen. Nachr Ges Wiss Göttingen Math Phys Kl 1930:10–18Google Scholar
  55. Kühn A (1950) Color change and color sense in cephalopods. Z Vgl Physiol 32(6):573–598PubMedGoogle Scholar
  56. Lemaire V, Tronel S, Montaron MF, Fabre A, Dugast E, Abrous DN (2012) Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci 32(9):3101–3108.  https://doi.org/10.1523/jneurosci.4731-11.2012CrossRefPubMedGoogle Scholar
  57. Lenhossék M (1894) Zur Kenntnis der Netzhaut der Cephalopoden. Ztschr Wiss Zool 58:636–660Google Scholar
  58. Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80(6):281–307.  https://doi.org/10.1016/j.pneurobio.2006.11.007CrossRefPubMedGoogle Scholar
  59. Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon EY, Rosenthal JJ, Eisenberg E (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169(2):191–202.e111.  https://doi.org/10.1016/j.cell.2017.03.025CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lucero MT, Gilly WF (1995) Physiology of squid olfaction. In: Abbott NJ, Williamson R, Maddock L (eds) Cephalopod neurobiology: neuroscience studies in squid, octopus and cuttlefish. Oxford University Press, London, pp 521–534CrossRefGoogle Scholar
  61. Lucero MT, Horrigan FT, Gilly WF (1992) Electrical responses to chemical stimulation of squid olfactory receptor cells. J Exp Biol 162(1):231–249Google Scholar
  62. Lucero MT, Huang W, Dang T (2000) Immunohistochemical evidence for the Na+/Ca2+ exchanger in squid olfactory neurons. Philos Trans R Soc Lond B Biol Sci 355(1401):1215–1218.  https://doi.org/10.1098/rstb.2000.0670CrossRefPubMedPubMedCentralGoogle Scholar
  63. Maselli V, Xu F, Syed NI, Polese G, Di Cosmo A (2018) A novel approach to primary cell culture for Octopus vulgaris neurons. Front Physiol 9:220CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mather JA (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A Sens Neural Behav Physiol 168:491–497CrossRefGoogle Scholar
  65. Mather JA (2008) Cephalopod consciousness: behavioural evidence. Conscious Cogn 17(1):37–48.  https://doi.org/10.1016/j.concog.2006.11.006CrossRefPubMedGoogle Scholar
  66. Mäthger LM, Roberts SB, Hanlon RT (2010) Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biol Lett 6:600–603.  https://doi.org/10.1098/rsbl.2010.0223CrossRefPubMedPubMedCentralGoogle Scholar
  67. Messenger JB (1977) Evidence that octopus is colour blind. J Exp Biol 70(1):49–55Google Scholar
  68. Mobley AS, Mahendra G, Lucero MT (2007) Evidence for multiple signaling pathways in single squid olfactory receptor neurons. J Comp Neurol 501(2):231–242.  https://doi.org/10.1002/cne.21230CrossRefPubMedGoogle Scholar
  69. Mollo E, Fontana A, Roussis V, Polese G, Amodeo P, Ghiselin MT (2014) Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. Front Chem 2:92.  https://doi.org/10.3389/fchem.2014.00092CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mollo E, Garson MJ, Polese G, Amodeo P, Ghiselin MT (2017) Taste and smell in aquatic and terrestrial environments. Nat Prod Rep 34(5):496–513.  https://doi.org/10.1039/c7np00008aCrossRefPubMedGoogle Scholar
  71. Moody MF, Parriss JR (1961) The discrimination of polarized light by octopus: a behavioural and morphological study. Zeitschrift für vergleichende Physiologie 44(3):268–291.  https://doi.org/10.1007/BF00298356CrossRefGoogle Scholar
  72. Moody MF, Robertson JD (1960) The fine structure of some retinal photoreceptors. J Biophys Biochem Cytol 7(1):87–92CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86(2):409–433.  https://doi.org/10.1152/physrev.00021.2005CrossRefPubMedGoogle Scholar
  74. Moroz LL (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74(3):177–190.  https://doi.org/10.1159/000258665CrossRefPubMedPubMedCentralGoogle Scholar
  75. Moroz LL, Kohn AB (2016) Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 371(1685):20150041.  https://doi.org/10.1098/rstb.2015.0041CrossRefPubMedPubMedCentralGoogle Scholar
  76. Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N (2012) A unique advantage for giant eyes in giant squid. Curr Biol 22(8):683–688.  https://doi.org/10.1016/j.cub.2012.02.031CrossRefPubMedGoogle Scholar
  77. Norman MD, Finn J, Tregenza T (2001) Dynamic mimicry in an Indo-Malayan octopus. Proc Biol Sci 268(1478):1755–1758.  https://doi.org/10.1098/rspb.2001.1708CrossRefPubMedPubMedCentralGoogle Scholar
  78. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47(2):241–307.  https://doi.org/10.1111/j.1469-185X.1972.tb00975.xCrossRefGoogle Scholar
  79. Piper DR, Lucero MT (1999) Calcium signalling in squid olfactory receptor neurons. Biol Signals Recept 8(6):329–337.  https://doi.org/10.1159/000014606CrossRefPubMedGoogle Scholar
  80. Polese G, Winlow W, Di Cosmo A (2014) Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare. J Aquat Anim Health 26(4):285–294.  https://doi.org/10.1080/08997659.2014.945047CrossRefPubMedGoogle Scholar
  81. Polese G, Bertapelle C, Di Cosmo A (2015) Role of olfaction in Octopus vulgaris reproduction. Gen Comp Endocrinol 210:55–62.  https://doi.org/10.1016/j.ygcen.2014.10.006CrossRefPubMedGoogle Scholar
  82. Polese G, Bertapelle C, Di Cosmo A (2016) Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization. Biol Open 5(5):611–619.  https://doi.org/10.1242/bio.017764CrossRefPubMedPubMedCentralGoogle Scholar
  83. Rowell CHF (1963) Excitatory and inhibitory pathways in the arm of Octopus. J Exp Biol 40(2):257–270Google Scholar
  84. Ruth P, Schmidtberg H, Westermann B, Schipp R (2002) The sensory epithelium of the tentacles and the rhinophore of Nautilus pompilius L. (cephalopoda, nautiloidea). J Morphol 251(3):239–255.  https://doi.org/10.1002/jmor.1086CrossRefPubMedGoogle Scholar
  85. Scotto-Lomassese S, Strambi C, Aouane A, Strambi A, Cayre M (2002) Sensory inputs stimulate progenitor cell proliferation in an adult insect brain. Curr Biol 12(12):1001–1005CrossRefPubMedGoogle Scholar
  86. Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523(9):1297–1317.  https://doi.org/10.1002/cne.23755CrossRefPubMedGoogle Scholar
  87. Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18(5):337–342.  https://doi.org/10.1016/j.cub.2008.01.056CrossRefPubMedGoogle Scholar
  88. Stubbs AL, Stubbs CW (2016) Spectral discrimination in color blind animals via chromatic aberration and pupil shape. Proc Natl Acad Sci USA 113(29):8206–8211.  https://doi.org/10.1073/pnas.1524578113CrossRefPubMedGoogle Scholar
  89. Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B (2001) Control of octopus arm extension by a peripheral motor program. Science 293(5536):1845–1848.  https://doi.org/10.1126/science.1060976CrossRefPubMedGoogle Scholar
  90. Sumbre G, Fiorito G, Flash T, Hochner B (2005) Neurobiology: motor control of flexible octopus arms. Nature 433(7026):595–596.  https://doi.org/10.1038/433595aCrossRefPubMedGoogle Scholar
  91. Sumbre G, Fiorito G, Flash T, Hochner B (2006) Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr Biol 16(8):767–772.  https://doi.org/10.1016/j.cub.2006.02.069CrossRefPubMedGoogle Scholar
  92. Tanner AR, Fuchs D, Winkelmann IE, Gilbert MTP, Pankey MS, Ribeiro ÂM, Kocot KM, Halanych KM, Oakley TH, da Fonseca RR, Pisani D, Vinther J (2017) Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the mesozoic marine revolution. Proc R Soc B Biol Sci 284(1850).  https://doi.org/10.1098/rspb.2016.2818
  93. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332.  https://doi.org/10.1146/annurev.physiol.010908.163209CrossRefPubMedGoogle Scholar
  94. Vitti JJ (2013) cephalopod cognition in an evolutionary context: implications for ethology. Biosemiotics 6(3):393–401.  https://doi.org/10.1007/s12304-013-9175-7CrossRefGoogle Scholar
  95. von Kölliker RA (1844) Entwicklungsgeschichte der Tintenfische. GermanGoogle Scholar
  96. Von Zernoff D (1869) Ueber das Geruchsorgan der cephalopoden. Bulletin de la Société Imperiale des Naturalistes de Moscou 42:72–90Google Scholar
  97. Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. Biol Bull 216(3):293–306.  https://doi.org/10.1086/BBLv216n3p293CrossRefPubMedGoogle Scholar
  98. Watkinson GB (1909) Untersuchungen tiber die sogenannten Geruchsorgane der Cephalopoden. Jena Z Med Naturw 44:353–414Google Scholar
  99. Wells MJ (1964) Detour experiments with octopuses. J Exp Biol 41(3):621–642Google Scholar
  100. Wells MJ (1978) Octopus. Physiology and behaviour of an advanced invertebrate. Chapman and Hall, LondonGoogle Scholar
  101. Wells MJ, Young JZ (1975) The subfrontal lobe and touch learning in the octopus. Brain Res 92(1):103–121CrossRefPubMedGoogle Scholar
  102. Wells MJ, Freeman NH, Ashburner M (1965) Some experiments on the chemotactile sense of octopuses. J Exp Biol 43(3):553–563PubMedGoogle Scholar
  103. Williamson R, Chrachri A (2007) A model biological neural network: the cephalopod vestibular system. Philos Trans R Soc Lond B Biol Sci 362(1479):473–481.  https://doi.org/10.1098/rstb.2006.1975CrossRefPubMedPubMedCentralGoogle Scholar
  104. Winters GC, Kohn AB, Laux R, Stern N, Bostwick C, Di Cosmo A, Hochner B, Moroz LL (2017) Molecular organization of octopus brains: first insights into unique memory center signaling. Integr Comp Biol 57:E180Google Scholar
  105. Wolken JJ (1958) Retinal structure: moilusc cephalopods: Octopus, Sepia. J Biophys Biochem Cytol 4(6):835–838CrossRefPubMedPubMedCentralGoogle Scholar
  106. Young JZ (1962) The retina of cephalopods and its degeneration after optic nerve section. Philos Trans R Soc Lond Ser B Biol Sci 245(718):1–18.  https://doi.org/10.1098/rstb.1962.0004CrossRefGoogle Scholar
  107. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, New YorkGoogle Scholar
  108. Young LD (1995) Reproduction of F1 Meishan, Fengjing, Minzhu, and Duroc gilts and sows. J Anim Sci 73(3):711–721.  https://doi.org/10.2527/1995.733711xCrossRefPubMedGoogle Scholar
  109. Zatylny C, Gagnon J, Boucaud-Camou E, Henry J (2000) ILME: a waterborne pheromonal peptide released by the eggs of Sepia officinalis. Biochem Biophys Res Commun 275(1):217–222.  https://doi.org/10.1006/bbrc.2000.3286CrossRefPubMedGoogle Scholar
  110. Zhang Y, Shi F, Song J, Zhang X, Yu S (2015) Hearing characteristics of cephalopods: modeling and environmental impact study. Integr Zool 10(1):141–151.  https://doi.org/10.1111/1749-4877.12104CrossRefPubMedGoogle Scholar
  111. Zullo L, Sumbre G, Agnisola C, Flash T, Hochner B (2009) Nonsomatotopic organization of the higher motor centers in octopus. Curr Biol 19(19):1632–1636.  https://doi.org/10.1016/j.cub.2009.07.067CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anna Di Cosmo
    • 1
  • Valeria Maselli
    • 1
  • Gianluca Polese
    • 1
  1. 1.Department of BiologyUniversity of Napoli Federico IINapoliItaly

Personalised recommendations