Advertisement

Glycans with Antiviral Activity from Marine Organisms

  • I. D. Grice
  • G. L. Mariottini
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

There remains today a critical need for new antiviral agents, particularly in view of the alarming increase in drug resistance and associated issues. The marine environment has been a prolific contributor towards the identification of novel therapeutic agents in the recent few decades. Added to this, glycans (or carbohydrate- or sugar-based compounds) have in very recent decades made outstanding contributions to the development of novel therapeutics. This review brings together these significant facets of modern drug discovery by presenting the reported literature on glycans derived from marine organisms that possess antiviral activity.

The glycans have been grouped together based on the marine organism they were isolated from, namely, (1) bacteria, (2) chromists, (3) plants and (4) animals. For chromists, glycans are further subsectioned into Ochrophyta (brown algae), Miozoa (according to www.algaebase.org; also called Myzozoa according to WoRMS, www.marinespecies.org) (dinoflagellates) and Bacillariophyta (diatoms). For plants, glycans are further subsectioned into Chlorophyta, Rhodophyta and Tracheophyta. Glycans isolated to date are reported as alginates, chitosan, extracellular polysaccharides, fucans (e.g. fucoidans), galactans (e.g. carrageenans), glycolipids, glycosaminoglycans, glycosides, glycosylated haemocyanin, laminarans, mannans, polysaccharides (not defined), rhamnans and xylomannans. Interestingly, many of the glycans displaying antiviral properties are sulfated.

Reports indicate that marine-sourced glycans have exhibited antiviral activity against African swine fever virus, cytomegalovirus, dengue virus, Epstein-Barr virus, encephalomyocarditis virus, human immunodeficiency virus, hepatitis C virus, herpes simplex virus, human cytomegalovirus, human papilloma virus, human rhino virus, influenza virus, Japanese encephalitis virus, murine leukaemia virus, murine sarcoma virus, Newcastle disease virus, parainfluenza virus, respiratory syncytial virus, Semliki Forest virus, tobacco mosaic virus, vaccinia virus, varicella zoster virus, viral haemorrhagic septicaemia virus and vesicular stomatitis virus. Selected representative glycan structures are presented in Fig. 20.1.

Abbreviations

ASFV

African swine fever virus

CMV

Cytomegalovirus

CS

Chondroitin sulfate

DENV

Dengue virus

EBV

Epstein-Barr virus

ECMV

Encephalomyocarditis virus

EPS

Exopolysaccharide

Fuc

Fucose

GAGS

Glycosaminoglycans

Gal

Galactose

Glc

Glucose

GlcA

Glucuronic acid

GS

Galactan sulfate

GulA

Guluronic acid

HCMV

Human cytomegalovirus

HCV

Hepatitis C virus

HIV

Human immunodeficiency virus

HPV

Human papilloma virus

HSV

Herpes simplex virus

HRV

Human rhino virus

IduA

Iduronic acid

IFV

Influenza virus

JEV

Japanese encephalitis virus

Man

Mannose

ManA

Mannuronic acid

MuLV

Murine leukaemia virus

MuSV

Murine sarcoma virus

NDV

Newcastle disease virus

PIFV

Parainfluenza virus

PS

Polysaccharide

Qui

Quinovose

Rha

Rhamnose

RSV

Respiratory syncytial virus

SF

Sulfated fucan

SFG

Sulfated galactan

SFV

Semliki Forest virus

SG

Sulfate groups

SGF

Sulfated galactofucan

SGP

Sulfated galactan polysaccharide

SP

Sulfated polysaccharide

SPMG

Sulfated polymannuroguluronate

SQDG

Sulfoquinovosyldiacylglycerol

SXM

Sulfated xylomannan

TMV

Tobacco mosaic virus

VC

Vaccinia virus

VHSV

Viral haemorrhagic septicaemia virus

VSV

Vesicular stomatitis virus

VZV

Varicella zoster virus

Xyl

Xylose

References

  1. Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2006) Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 67(22):2474–2482PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K (2015) Antiviral Potential of Algae polysaccharides isolated from marine sources: a review. Biomed Res Int 2015:825203PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmed AB, Adel M, Karimi P, Peidayesh M (2014) Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates. Adv Food Nutr Res 73:197–220PubMedCrossRefPubMedCentralGoogle Scholar
  4. Al-Nahas MO, Darwish MM, Ali AE, Amin MA (2011) Characterisation of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. AM. Afr J Microbiol Res 5(22):3823–3831CrossRefGoogle Scholar
  5. Amornrut C, Toida T, Imanari T, Woo ER, Park H, Linhardt R et al (1999) A new sulfated beta-galactan from clams with anti-HIV activity. Carbohydr Res 321(1–2):121–127PubMedCrossRefPubMedCentralGoogle Scholar
  6. Antonov AS, Avilov SA, Kalinovsky AI, Anastyuk SD, Dmitrenok PS, Evtushenko EV et al (2008) Triterpene glycosides from Antarctic sea cucumbers. 1. Structure of liouvillosides A1, A2, A3, B1, and B2 from the sea cucumber Staurocucumis liouvillei: new procedure for separation of highly polar glycoside fractions and taxonomic revision. J Nat Prod 71(10):1677–1685PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G et al (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baba M, Snoeck R, Pauwels R, de Clercq E (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32(11):1742–1745PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bandyopadhyay SS, Navid MH, Ghosh T, Schnitzler P, Ray B (2011) Structural features and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria indica. Phytochemistry 72(2–3):276–283PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bergefall K, Trybala E, Johansson M, Uyama T, Naito S, Yamada S et al (2005) Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J Biol Chem 280(37):32193–32199PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI (2002) Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr Res 337(8):719–730PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bouhlal R, Riadi H, Bourgougnon N (2010) Antiviral activity of the extracts of Rhodophyceae from Morocco. Afr J Biotechnol 9(46):7968–7975CrossRefGoogle Scholar
  13. Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G et al (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs 9(7):1187–1209PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bourgougnon N, Lahaye M, Chermann J-C, Kornprobst J-M (1993) Composition and antiviral activities of a sulfated polysaccharide from Schizymenia dubyi (Rhodophyta, Gigartinales). Bioorg Med Chem Lett 3(6):1141–1146CrossRefGoogle Scholar
  15. Bourgougnon N, Lahaye M, Quemener B, Chermann J-C, Rimbert M, Cormaci M et al (1996) Annual variation in composition and in vitro anti-HIV-1 activity of the sulfated glucuronogalactan from Schizymenia dubyi (Rhodophyta, Gigartinales). J Appl Phycol 8(2):155–161CrossRefGoogle Scholar
  16. Caceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zuniga EA (2000) Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry 53(1):81–86PubMedCrossRefPubMedCentralGoogle Scholar
  17. Carlucci MJ, Pujol CA, Ciancia M, Noseda MD, Matulewicz MC, Damonte EB et al (1997a) Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 20(2):97–105PubMedCrossRefPubMedCentralGoogle Scholar
  18. Carlucci MJ, Scolaro LA, Errea MI, Matulewicz MC, Damonte EB (1997b) Antiviral activity of natural sulphated galactans on herpes virus multiplication in cell culture. Planta Med 63(5):429–432PubMedCrossRefPubMedCentralGoogle Scholar
  19. Carlucci MJ, Scolaro LA, Noseda MD, Cerezo AS, Damonte EB (2004) Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antivir Res 64(2):137–141PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cassolato JE, Noseda MD, Pujol CA, Pellizzari FM, Damonte EB, Duarte ME (2008) Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr Res 343(18):3085–3095PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73(3):203–266PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chattopadhyay K, Mateu CG, Mandal P, Pujol CA, Damonte EB, Ray B (2007) Galactan sulfate of Grateloupia indica: Isolation, structural features and antiviral activity. Phytochemistry 68(10):1428–1435PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chattopadhyay K, Ghosh T, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2008) Polysaccharides from Gracilaria corticata: sulfation, chemical characterization and anti-HSV activities. Int J Biol Macromol 43(4):346–351PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cheung RC, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL et al (2014) Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 98(8):3475–3494PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S (2001) A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330(4):529–535PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chirasuwan N, Chaiklahan R, Kittakoop P, Chanasattru W, Ruengjitchatchawalya M, Tanticharoen M, Bunnag B (2009) Anti-HSV-1 activity of sulfoquinovosyl diacylglycerol isolated from Spirulina platensis. ScienceAsia 35:137–141CrossRefGoogle Scholar
  27. Chiu YH, Chan YL, Li TL, Wu CJ (2012) Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Mar Biotechnol (NY) 14(4):468–478CrossRefGoogle Scholar
  28. Chizhov AO, Dell A, Morris HR, Reason AJ, Haslam SM, McDowell RA et al (1998) Structural analysis of laminarans by MALDI and FAB mass spectrometry. Carbohydr Res 310(3):203–210CrossRefGoogle Scholar
  29. Chizhov AO, Dell A, Morris HR, Haslam SM, McDowell RA, Shashkov AS et al (1999) A study of fucoidan from the brown seaweed Chorda filum. Carbohydr Res 320(1):108–119PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chollet L, Saboural P, Chauvierre C, Villemin JN, Letourneur D, Chaubet F (2016) Fucoidans in Nanomedicine. Mar Drugs 14(8):145PubMedCentralCrossRefGoogle Scholar
  31. Cimino P, Bifulco G, Casapullo A, Bruno I, Gomez-Paloma L, Riccio R (2001) Isolation and NMR characterization of rosacelose, a novel sulfated polysaccharide from the sponge Mixylla rosacea. Carbohydr Res 334(1):39–47PubMedCrossRefPubMedCentralGoogle Scholar
  32. Conchie J, Percival EGV (1950) 167. Fucoidin. Part II. The hydrolysis of a methylated fucoidin prepared from Fucus vesiculosus. J Chem Soc (Resumed) (0):827–832Google Scholar
  33. Damonte E, Neyts J, Pujol CA, Snoeck R, Andrei G, Ikeda S et al (1994) Antiviral activity of a sulphated polysaccharide from the red seaweed Nothogenia fastigiata. Biochem Pharmacol 47(12):2187–2192PubMedCrossRefPubMedCentralGoogle Scholar
  34. Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11(18):2399–2419PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dang VT, Benkendorff K, Green T, Speck P (2015) Marine snails and slugs: a great place to look for antiviral drugs. J Virol 89(16):8114–8118PubMedPubMedCentralCrossRefGoogle Scholar
  36. Davis R, Zivanovic S, D’Souza DH, Davidson PM (2012) Effectiveness of chitosan on the inactivation of enteric viral surrogates. Food Microbiol 32(1):57–62PubMedCrossRefPubMedCentralGoogle Scholar
  37. de S.F-Tischer PC, Talarico LB, Noseda MD, Pita B. Guimarães SM, Damonte EB, Duarte MER (2006) Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr Polym 63(4):459–465CrossRefGoogle Scholar
  38. de Souza LM, Sassaki GL, Romanos MT, Barreto-Bergter E (2012) Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Mar Drugs 10(4):918–931PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dolashka P, Velkova L, Shishkov S, Kostova K, Dolashki A, Dimitrov I et al (2010) Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. Carbohydr Res 345(16):2361–2367PubMedCrossRefGoogle Scholar
  40. Duarte ME, Noseda DG, Noseda MD, Tulio S, Pujol CA, Damonte EB (2001) Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine 8(1):53–58PubMedCrossRefPubMedCentralGoogle Scholar
  41. Duarte ME, Cauduro JP, Noseda DG, Noseda MD, Goncalves AG, Pujol CA et al (2004) The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydr Res 339(2):335–347PubMedCrossRefPubMedCentralGoogle Scholar
  42. El Baroty GS, El-Baz FK, Abd-Elmoein I, Abd El Baky HH, Ali Mohamed M, Ibrahim EA (2011) Evaluation of glycolipids of some Egyptian marine algae as a source of bioactive substances. Int Res J Pharm 2(3):165–174Google Scholar
  43. Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM (2012) In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 9:307PubMedPubMedCentralCrossRefGoogle Scholar
  44. Estevez JM, Ciancia M, Cerezo AS (2001) DL-Galactan hybrids and agarans from gametophytes of the red seaweed Gymnogongrus torulosus. Carbohydr Res 331(1):27–41PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fabregas J, Garcia D, Fernandez-Alonso M, Rocha AI, Gomez-Puertas P, Escribano JM et al (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res 44(1):67–73PubMedCrossRefPubMedCentralGoogle Scholar
  46. Feldman SC, Reynaldi S, Stortz CA, Cerezo AS, Damont EB (1999) Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine 6(5):335–340PubMedCrossRefPubMedCentralGoogle Scholar
  47. Florez N, Gonzalez-Munoz MJ, Ribeiro D, Fernandes E, Dominguez H, Freitas M (2017) Algae polysaccharides’ chemical characterization and their role in the inflammatory process. Curr Med Chem 24(2):149–175PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ghosh P, Adhikari U, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB et al (2004) In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry 65(23):3151–3157PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ghosh T, Pujol CA, Damonte EB, Sinha S, Ray B (2009) Sulfated xylomannans from the red seaweed Sebdenia polydactyla: structural features, chemical modification and antiviral activity. Antivir Chem Chemother 19(6):235–242PubMedCrossRefPubMedCentralGoogle Scholar
  50. Girond S, Crance JM, Van Cuyck-Gandre H, Renaudet J, Deloince R (1991) Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol 142(4):261–270PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gonzalez ME, Alarcon B, Carrasco L (1987) Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob Agents Chemother 31(9):1388–1393PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; Searched on 12 Dec 2017
  53. Gustafson KR, Cardellina JH 2nd, Fuller RW, Weislow OS, Kiser RF, Snader KM, et al. AIDS-antiviral sulfolipids from Cyanobacteria (Blue-Green Algae). JNCI 1989;81(16):1254-1258.Google Scholar
  54. Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antivir Res 83(3):282–289PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int J Biol Macromol 17(5):293–297PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hayashi K, Hayashi T, Kojima I (1996a) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12(15):1463–1471PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hayashi T, Hayashi K, Maeda M, Kojima I (1996b) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8(1):109–116PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hidari KI, Takahashi N, Arihara M, Nagaoka M, Morita K, Suzuki T (2008) Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem Biophys Res Commun 376(1):91–95PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hoshino T, Hayashi T, Hayashi K, Hamada J, Lee JB, Sankawa U (1998) An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biol Pharm Bull 21(7):730–734PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hu Y, Hu G, Yu J, Lin Y, Chen S, Yuan J et al (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13(1):202–221PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huheihel M, Ishanu V, Tal J, Arad SM (2002) Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 50(2-3):189–200PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hui B, Li J, Geng MY (2008) Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome drug candidate, decreased vulnerability of PC12 cells to human immunodeficiency virus tat protein through attenuating calcium overload. J Neurosci Res 86(5):1169–1177PubMedCrossRefPubMedCentralGoogle Scholar
  64. Irwin KK, Renzette N, Kowalik TF, Jensen JD (2016) Antiviral drug resistance as an adaptive process. Virus Evol 2(1):vew014PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ivanova V, Rouseva R, Kolarova M, Serkedjieva J, Rachev R, Manolova N (1994) Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep Biochem 24(2):83–97PubMedPubMedCentralGoogle Scholar
  66. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9(2):196–223PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jouanneau D, Guibet M, Boulenguer P, Mazoyer J, Smietana M, Helbert W (2010) New insights into the structure of hybrid κ-/μ-carrageenan and its alkaline conversion. Food Hydrocoll 24(4):452–461CrossRefGoogle Scholar
  68. Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S et al (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68(7):1037–1041PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T (2007) Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol Pharm Bull 30(8):1573–1575PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kang HK, Seo CH, Park Y (2015) The effects of marine carbohydrates and glycosylated compounds on human health. Int J Mol Sci 16(3):6018–6056PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kato D, Era S, Watanabe I, Arihara M, Sugiura N, Kimata K et al (2010) Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antivir Res 88(2):236–243PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kim M, Yim JH, Kim SY, Kim HS, Lee WG, Kim SJ et al (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antivir Res 93(2):253–259PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kolender AA, Pujol CA, Damonte EB, Matulewicz MC, Cerezo AS (1997) The system of sulfated α-(1 → 3)-linked d-mannans from the red seaweed Nothogenia fastigiata: Structures, antiherpetic and anticoagulant properties. Carbohydr Res 304(1):53–60PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lahaye M (2001) Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 13(2):173–184CrossRefGoogle Scholar
  75. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8(9):2435–2465PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lazarus JV, Sperle I, Maticic M, Wiessing L (2014) A systematic review of Hepatitis C virus treatment uptake among people who inject drugs in the European Region. BMC Infect Dis 14(Suppl 6):S16PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lee J-B, Yamagaki T, Maeda M, Nakanishi H (1998) Rhamnan sulfate from cell walls of Monostroma latissimum. Phytochemistry 48(6):921–925CrossRefGoogle Scholar
  78. Lee JB, Hayashi K, Hayashi T, Sankawa U, Maeda M (1999) Antiviral activities against HSV-1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma latissimum. Planta Med 65(5):439–441PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lee JB, Hayashi T, Hayashi K, Sankawa U (2000) Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J Nat Prod 63(1):136–138PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lee JB, Hayashi K, Maeda M, Hayashi T (2004) Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med 70(9):813–817PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y et al (2006) Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 29(10):2135–2139PubMedCrossRefPubMedCentralGoogle Scholar
  82. Lee DY, Lin X, Paskaleva EE, Liu Y, Puttamadappa SS, Thornber C et al (2009) Palmitic Acid Is a Novel CD4 Fusion Inhibitor That Blocks HIV Entry and Infection. AIDS Res Hum Retrovir 25(12):1231–1241PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lee J-B, Koizumi S, Hayashi K, Hayashi T (2010) Structure of rhamnan sulfate from the green alga Monostroma nitidum and its anti-herpetic effect. Carbohydr Polym 81(3):572–577CrossRefGoogle Scholar
  84. Leong YA, Atnerkar A, Yu D (2017) Human immunodeficiency virus playing hide-and-seek: understanding the TFH cell reservoir and proposing strategies to overcome the follicle sanctuary. Front Immunol 8:622PubMedPubMedCentralCrossRefGoogle Scholar
  85. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13(8):1671–1695PubMedCrossRefPubMedCentralGoogle Scholar
  86. Loya S, Reshef V, Mizrachi E, Silberstein C, Rachamim Y, Carmeli S et al (1998) The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: contribution of different moieties to their high potency. J Nat Prod 61(7):891–895PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lu CX, Li J, Sun YX, Qi X, Wang QJ, Xin XL et al (2007) Sulfated polymannuroguluronate, a novel anti-AIDS drug candidate, inhibits HIV-1 Tat-induced angiogenesis in Kaposi’s sarcoma cells. Biochem Pharmacol 74(9):1330–1339PubMedCrossRefPubMedCentralGoogle Scholar
  88. Maier MS, Roccatagliata AJ, Kuriss A, Chludil H, Seldes AM, Pujol CA et al (2001) Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J Nat Prod 64(6):732–736PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother 18(3):153–162PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mandal P, Pujol CA, Carlucci MJ, Chattopadhyay K, Damonte EB, Ray B (2008) Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei. Phytochemistry 69(11):2193–2199PubMedCrossRefPubMedCentralGoogle Scholar
  91. Manilal A, Sujith S, Selvin J, Seghal Kiran G, Shakir C (2009) In vivo antiviral activity of polysaccharide from the indian green alga Acrosiphonia orientalis (J. Agardh): Potential implication in shrimp disease management. World J Fish Mar Sci 1(4):278–282Google Scholar
  92. Marchetti M, Pisani S, Pietropaolo V, Seganti L, Nicoletti R, Orsi N (1995) Inhibition of herpes simplex virus infection by negatively charged and neutral carbohydrate polymers. J Chemother 7(2):90–96PubMedCrossRefPubMedCentralGoogle Scholar
  93. Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejias EG et al (2005) Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res 340(15):2392–2402PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mayer SV, Tesh RB, Vasilakis N (2017) The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Trop 166:155–163PubMedCrossRefPubMedCentralGoogle Scholar
  95. Mazumder S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2002) Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol 31(1-3):87–95PubMedCrossRefPubMedCentralGoogle Scholar
  96. Meiyu G, Fuchuan L, Xianliang X, Jing L, Zuowei Y, Huashi G (2003) The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV-1 rgp120 and CD4 molecule. Antivir Res 59(2):127–135PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833PubMedCrossRefPubMedCentralGoogle Scholar
  98. Miao B, Geng M, Li J, Li F, Chen H, Guan H et al (2004) Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome (AIDS) drug candidate, targeting CD4 in lymphocytes. Biochem Pharmacol 68(4):641–649PubMedCrossRefPubMedCentralGoogle Scholar
  99. Moghadamtousi SZ, Nikzad S, Kadir HA, Abubakar S, Zandi K (2015) Potential antiviral agents from marine fungi: an overview. Mar Drugs 13(7):4520–4538PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mohamed SF, Agili FA (2013) Antiviral sulphated polysaccharide from brown algae Padinia pavonia characterisation and structure elucidation. Int J ChemTech Res 5:1469–1476Google Scholar
  101. Moran-Santibanez K, Cruz-Suarez LE, Ricque-Marie D, Robledo D, Freile-Pelegrin Y, Pena-Hernandez MA et al (2016) Synergistic effects of sulfated polysaccharides from Mexican seaweeds against Measles Virus. Biomed Res Int 2016:8502123PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Kimura K, Makino T et al (1999) Structural study of fucoidan from Cladosiphon okamuranus TOKIDA. Glycoconj J 16(1):19–26PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nagorskaia VP, Reunov AV, Lapshina LA, Ermak IM, Barabanova AO (2008) [Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves]. Izv Akad Nauk Ser Biol (3):360–364Google Scholar
  104. Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N (1987a) Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother 31(10):1524–1528PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N (1987b) Antiretroviral activity in a marine red alga: reverse transcriptase inhibition by an aqueous extract of Schizymenia pacifica. J Cancer Res Clin Oncol 113(5):413–416PubMedCrossRefPubMedCentralGoogle Scholar
  106. Naumann I, Darsow KH, Walter C, Lange HA, Buchholz R (2007) Identification of sulfoglycolipids from the alga Porphyridium purpureum by matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21(19):3185–3192PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nesterova NV, Zagorodnya SD, Moshtanska V, Dolashka P, Baranova GV, Golovan AV et al (2011) Antiviral activity of hemocyanin isolated from marine snail Rapana venosa. Antivir Res 90(2):A38CrossRefGoogle Scholar
  108. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335PubMedPubMedCentralCrossRefGoogle Scholar
  109. Neyts J, Snoeck R, Schols D, Balzarini J, Esko JD, Van Schepdael A et al (1992) Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology 189(1):48–58PubMedCrossRefPubMedCentralGoogle Scholar
  110. Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri T et al (2000) A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent able to produce exopolysaccharides. Syst Appl Microbiol 23(3):426–432PubMedCrossRefPubMedCentralGoogle Scholar
  111. Novio SN, Núñez MJ, Freire-Garabal M (2014) Marine red algae as source of bioactive therapeutic molecules with activity against viral infection. In: A-u-Rahman, Choudhary MI (eds) Frontiers in anti-infective drug discovery, vol 2. Bentham Science, Sharjah, pp 3–85Google Scholar
  112. O’Doherty JV, Dillon S, Figat S, Callan JJ, Sweeney T (2010) The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim Feed Sci Technol 157(3):173–180CrossRefGoogle Scholar
  113. Ohta K, Mizushina Y, Hirata N, Takemura M, Sugawara F, Matsukage A et al (1998) Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem Pharm Bull 46(4):684–686PubMedCrossRefPubMedCentralGoogle Scholar
  114. Ohta Y, Lee JB, Hayashi K, Hayashi T (2009) Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biol Pharm Bull 32(5):892–898PubMedCrossRefPubMedCentralGoogle Scholar
  115. Philipp EER, Abele D (2010) Masters of longevity: lessons from long-lived bivalves—a mini-review. Gerontology 56(1):55–65PubMedCrossRefPubMedCentralGoogle Scholar
  116. Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA (2007) Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod 70(11):1753–1760PubMedCrossRefPubMedCentralGoogle Scholar
  117. Plouguerné E, de Souza LM, Sassaki GL, Cavalcanti JF, Villela Romanos MT, da Gama BAP et al (2013) Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Mar Drugs 11(11):4628–4640PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pomin VH (2010) Structural and functional insights into sulfated galactans: a systematic review. Glycoconj J 27(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  119. Ponce NM, Pujol CA, Damonte EB, Flores ML, Stortz CA (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 338(2):153–165PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pujol CA, Errea MI, Matulewicz MC, Damonte EB (1996) Antiherpetic activity of S1, an algal derived sulphated galactan. Phytother Res 10(5):410–413CrossRefGoogle Scholar
  121. Pujol CA, Estevez JM, Carlucci MJ, Ciancia M, Cerezo AS, Damonte EB (2002) Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus. Antivir Chem Chemother 13(2):83–89PubMedCrossRefPubMedCentralGoogle Scholar
  122. Pujol CA, Scolaro LA, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB (2006) Antiviral activity of a carrageenan from Gigartina skottsbergii against intraperitoneal murine herpes simplex virus infection. Planta Med 72(2):121–125PubMedCrossRefPubMedCentralGoogle Scholar
  123. Pujol CA, Ray S, Ray B, Damonte EB (2012) Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol 51(4):412–416PubMedCrossRefPubMedCentralGoogle Scholar
  124. Queiroz KC, Medeiros VP, Queiroz LS, Abreu LR, Rocha HA, Ferreira CV et al (2008) Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed Pharmacother 62(5):303–307PubMedCrossRefPubMedCentralGoogle Scholar
  125. Raposo MF, de Morais AM, de Morais RM (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101(1-2):56–63PubMedCrossRefPubMedCentralGoogle Scholar
  126. Riccio R, Kinnel RB, Bifulco G, Scheuer PJ (1996) Kakelokelose, a sulfated mannose polysaccharide with anti-HIV activity from the Pacific tunicate Didemnum molle. Tetrahedron Lett 37(12):1979–1982CrossRefGoogle Scholar
  127. Richards JT, Kern ER, Glasgow LA, Overall JC Jr, Deign EF, Hatch MT (1978) Antiviral activity of extracts from marine algae. Antimicrob Agents Chemother 14(1):24–30PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rodriguez MC, Merino ER, Pujol CA, Damonte EB, Cerezo AS, Matulewicz MC (2005) Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydr Res 340(18):2742–2751PubMedCrossRefPubMedCentralGoogle Scholar
  129. Rowley DC, Hansen MS, Rhodes D, Sotriffer CA, Ni H, McCammon JA et al (2002) Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10(11):3619–3625PubMedCrossRefPubMedCentralGoogle Scholar
  130. Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC et al (2015) A higher level classification of all living organisms. PLoS One 10(4):e0119248PubMedPubMedCentralCrossRefGoogle Scholar
  131. Saleem A, Akhtar MF, Mushtaq MF, Saleem M, Muhammad ST, Akhtar B et al (2016) Current trends in the treatment of hepatitis C: interventions to avoid adverse effects and increase effectiveness of anti-HCV drugs. EXCLI J 15:578–588PubMedPubMedCentralGoogle Scholar
  132. Sanchez-Paz A, Muhlia-Almazan A, Saborowski R, Garcia-Carreno F, Sablok G, Mendoza-Cano F (2014) Marine viruses: the beneficial side of a threat. Appl Biochem Biotechnol 174(7):2368–2379PubMedCrossRefPubMedCentralGoogle Scholar
  133. Santoyo S, Plaza M, Jaime L, Ibanez E, Reglero G, Senorans FJ (2010) Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. J Agric Food Chem 58(15):8522–8527PubMedCrossRefPubMedCentralGoogle Scholar
  134. Santoyo S, Jaime L, Plaza M, Herrero M, Rodriguez-Meizoso I, Ibanez E et al (2012) Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J Appl Phycol 24(4):731–741CrossRefGoogle Scholar
  135. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161PubMedCrossRefPubMedCentralGoogle Scholar
  136. Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Plagianos MG, Friedland B et al (2008) Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet 372(9654):1977–1987PubMedCrossRefPubMedCentralGoogle Scholar
  137. Su X, Zivanovic S, D’Souza DH (2009) Effect of chitosan on the infectivity of murine norovirus, feline calicivirus, and bacteriophage MS2. J Food Prot 72(12):2623–2628PubMedCrossRefPubMedCentralGoogle Scholar
  138. Su J, Jiang L, Wu J, Liu Z, Wu Y (2016) Anti-tumor and anti-virus activity of polysaccharides extracted from Sipunculus nudus (SNP) on Hepg2.2.15. Int J Biol Macromol 87:597–602PubMedCrossRefPubMedCentralGoogle Scholar
  139. Suttle CA (2007) Marine viruses-major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812PubMedCrossRefPubMedCentralGoogle Scholar
  140. Talarico LB, Damonte EB (2007) Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363(2):473–485PubMedCrossRefPubMedCentralGoogle Scholar
  141. Talarico LB, Zibetti RG, Faria PC, Scolaro LA, Duarte ME, Noseda MD et al (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol 34(1–2):63–71PubMedCrossRefPubMedCentralGoogle Scholar
  142. Talarico LB, Pujol CA, Zibetti RG, Faria PC, Noseda MD, Duarte ME et al (2005) The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antivir Res 66(2–3):103–110PubMedCrossRefPubMedCentralGoogle Scholar
  143. Talarico LB, Duarte ME, Zibetti RG, Noseda MD, Damonte EB (2007) An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med 73(14):1464–1468PubMedCrossRefPubMedCentralGoogle Scholar
  144. Talarico LB, Noseda MD, Ducatti DR, Duarte ME, Damonte EB (2011) Differential inhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J Gen Virol 92(Pt 6):1332–1342PubMedCrossRefPubMedCentralGoogle Scholar
  145. Talyshinsky MM, Souprun YY, Huleihel MM (2002) Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  146. Thuy TT, Ly BM, Van TT, Quang NV, Tu HC, Zheng Y et al (2015) Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr Polym 115:122–128PubMedCrossRefPubMedCentralGoogle Scholar
  147. Trinchero J, Ponce NM, Cordoba OL, Flores ML, Pampuro S, Stortz CA et al (2009) Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytother Res 23(5):707–712PubMedCrossRefPubMedCentralGoogle Scholar
  148. Turner EV, Sonnenfeld G (1979) Interferon induction by the immunomodulating polyanion lambda carrageenan. Infect Immun 25(1):467–469PubMedPubMedCentralGoogle Scholar
  149. Usov A (1999) Alginic acids and alginates: analytical methods used for their estimation and characterisation of composition and primary structure. Russ Chem Rev 68:957–966CrossRefGoogle Scholar
  150. Uzair B, Mahmood Z, Tabassum S (2011) Antiviral activity of natural products extracted from marine organisms. BioImpacts 1(4):203–211PubMedPubMedCentralGoogle Scholar
  151. van de Velde F, Antipova AS, Rollema HS, Burova TV, Grinberg NV, Pereira L et al (2005) The structure of κ/ι-hybrid carrageenans II. Coil–helix transition as a function of chain composition. Carbohydr Res 340(6):1113–1129PubMedCrossRefPubMedCentralGoogle Scholar
  152. Varki A, Lowe JB (2009) Biological Roles of Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY). The Consortium of Glycobiology Editors, La Jolla, CAGoogle Scholar
  153. Vera J, Castro J, Gonzalez A, Moenne A (2011) Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs 9(12):2514–2525PubMedPubMedCentralCrossRefGoogle Scholar
  154. Vo T-S, Kim S-K (2010) Potential anti-HIV agents from marine resources: an overview. Mar Drugs 8:2871–2892PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vo T-S, Ngo D-H, Ta QV, Kim S-K (2011) Marine organisms as a therapeutic source against herpes simplex virus infection. Eur J Pharm Sci 44(1):11–20PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wang H, Li Y-L, Shen W-Z, Rui W, Ma X-J, Cen Y-Z (2007a) Antiviral activity of a sulfoquinovosyldiacylglycerol (SQDG) compound isolated from the green alga Caulerpa racemosa. Bot Mar 50:185Google Scholar
  157. Wang SC, Bligh SW, Shi SS, Wang ZT, Hu ZB, Crowder J et al (2007b) Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int J Biol Macromol 41(4):369–375PubMedCrossRefPubMedCentralGoogle Scholar
  158. Wang J, Zhang Q, Zhang Z, Zhang H, Niu X (2010) Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Int J Biol Macromol 47(2):126–131PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wang W, Zhang P, Hao C, Zhang XE, Cui ZQ, Guan HS (2011) In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus. Antivir Res 92(2):237–246PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wang W, Wang SX, Guan HS (2012) The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 10(12):2795–2816PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wang L, Wang X, Wu H, Liu R (2014a) Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs 12(9):4984–5020PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang SX, Zhang XS, Guan HS, Wang W (2014b) Potential anti-HPV and related cancer agents from marine resources: an overview. Mar Drugs 12(4):2019–2035PubMedPubMedCentralCrossRefGoogle Scholar
  163. Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29(4):497–511PubMedCrossRefGoogle Scholar
  164. Woo ER, Kim WS, Kim YS (2001) Virus-cell fusion inhibitory activity for the polysaccharides from various Korean edible clams. Arch Pharm Res 24(6):514–517PubMedCrossRefPubMedCentralGoogle Scholar
  165. WoRMS. Chromista (2008) Accessed through: World Register of Marine Species. http://www.marinespecies.org/aphia.php?p=taxdetails&id=7. Accessed on 12 Dec 2017
  166. Yang B, Yu G, Zhao X, Ren W, Jiao G, Fang L et al (2011) Structural characterisation and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria lumbricalis. Food Chem 124(1):50–57CrossRefGoogle Scholar
  167. Yen HL (2016) Current and novel antiviral strategies for influenza infection. Curr Opin Virol 18:126–134PubMedCrossRefPubMedCentralGoogle Scholar
  168. Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6(1):17–25PubMedCrossRefPubMedCentralGoogle Scholar
  169. Yu N, Liu S, Han JJ, Sun FS (2008) The depressive effect of glycosaminoglycan from scallop on type-1 herpes simplex virus. Acta Acad Med Qingdao Univ 2:111–114Google Scholar
  170. Yu G, Hu Y, Yang B, Zhao X, Wang P, Ji G et al (2010) Extraction, isolation and structural characterization of polysaccharides from a red alga Gloiopeltis furcata. J Ocean Univ China 9(2):193–197CrossRefGoogle Scholar
  171. Yuan H, Song J, Li X, Li N, Dai J (2006) Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Lett 243(2):228–234PubMedCrossRefPubMedCentralGoogle Scholar
  172. Zhang HF, Li JB, Hou G, Huang DN (2008) Study on the inhibition effects of Perna viridis polysaccharides on influenza virus reproduction in MDCK cell cultures. Mod Med J China 5:4–7Google Scholar
  173. Zhu W, Chiu LC, Ooi VE, Chan PK, Ang PO Jr (2006) Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytomedicine 13(9–10):695–701PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Glycomics and School of Medical ScienceGriffith UniversitySouthportAustralia
  2. 2.Department of Earth, Environment and Life SciencesUniversity of GenovaGenovaItaly

Personalised recommendations