Advertisement

Sperm Nuclear Basic Proteins of Marine Invertebrates

  • Anna Török
  • Sebastian G. Gornik
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

In this chapter, a short evolutionary history and comparative analysis of sperm nuclear basic proteins (SNBPs) in marine invertebrates are presented based on some of the most recent publications in the field and building upon previously published reviews on the topic. Putative functions of SNBPs in sperm chromatin beyond DNA packaging will also be discussed with a primary focus on outstanding research questions.

In somatic cells of all metazoans, DNA is packaged into tightly folded and dynamically accessible chromatin by canonical histones H2A, H2B, H3 and H4. Sperm chromatin of many animals, on the other hand, is organised by small yet structurally highly heterogeneous proteins called SNBPs, which can package sperm DNA on their own or in combination with each other. In extreme cases, sperm chromatin is condensed into a volume 6–10 times smaller than that of a somatic nucleus. SNBPs are classified into three major groups: H1 histone-type proteins (H-type SNBPs), protamines (P-type SNBPs) and protamine-like proteins (PL-type SNBPs). P-type SNBPs are mostly found in vertebrates, while PL-type SNBPs are ubiquitous in many invertebrate phyla. PL-type and P-type SNBPs evolved from histone H-type SNBP precursors through vertical evolution. Porifera, Ctenophora and Crustacea, Echinoidea (phylum Echinodermata) and Hydrozoa (phylum Hydrozoa) lack SNBPs. Echinoidea and Hydrozoa, however, evolved novel nucleosomal histone variants with specific roles during spermatogenesis. Seemingly, chromatin condensation plays a critical role in the silencing and tight packing of the genome within the sperm nucleus of most animals. However, the question of what necessitates the compaction of some sperm DNA beyond classical nucleosomal packaging while other sperm function using ‘normal’ histones remains unanswered to date.

References

  1. Ausio J (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 274(44):31115–31118PubMedCrossRefGoogle Scholar
  2. Ausio J, Subirana JA (1982) Nuclear proteins and the organization of chromatin in spermatozoa of Mytilus edulis. Exp Cell Res 141(1):39–45PubMedCrossRefGoogle Scholar
  3. Ausio J, Van Holde KE (1987) A dual chromatin organization in the sperm of the bivalve mollusc Spisula solidissima. Eur J Biochem 165(2):363–371PubMedCrossRefGoogle Scholar
  4. Ausio J, Greulich KO, Haas E, Wachtel E (1984) Characterization of the fluorescence of the protamine thynnine and studies of binding to double-stranded DNA. Biopolymers 23(11):2559–2571PubMedCrossRefGoogle Scholar
  5. Ausio J, Van Veghel ML, Gomez R, Barreda D (1997) The sperm nuclear basic proteins (SNBPs) of the sponge Neofibularia nolitangere: implications for the molecular evolution of SNBPs. J Mol Evol 45(1):91–96PubMedCrossRefGoogle Scholar
  6. Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93(2):298–305PubMedCrossRefGoogle Scholar
  7. Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8(9):227.  https://doi.org/10.1186/gb-2007-8-9-227PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bedford JM, Calvin HI (1974) The occurrence and possible functional significance of -S-S- crosslinks in sperm heads, with particular reference to eutherian mammals. J Exp Zool 188(2):137–155.  https://doi.org/10.1002/jez.1401880203PubMedCrossRefGoogle Scholar
  9. Biegeleisen K (2006) The probable structure of the protamine-DNA complex. J Theor Biol 241(3):533–540.  https://doi.org/10.1016/j.jtbi.2005.12.015PubMedCrossRefGoogle Scholar
  10. Bloch DP (1969) A catalog of sperm histones. Genetics 61(Suppl 1):93–111Google Scholar
  11. Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28(1):10–12.  https://doi.org/10.1038/88194PubMedCrossRefGoogle Scholar
  12. Brewer LR, Corzett M, Balhorn R (1999) Protamine-induced condensation and decondensation of the same DNA molecule. Science 286(5437):120–123PubMedCrossRefGoogle Scholar
  13. Busslinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1(1):27–33PubMedPubMedCentralGoogle Scholar
  14. Carlos S, Hunt DF, Rocchini C, Arnott DP, Ausio J (1993) Post-translational cleavage of a histone H1-like protein in the sperm of Mytilus. J Biol Chem 268(1):195–199PubMedGoogle Scholar
  15. Casas MT, Ausio J, Subirana JA (1993) Chromatin fibers with different protamine and histone compositions. Exp Cell Res 204(2):192–197.  https://doi.org/10.1006/excr.1993.1024PubMedCrossRefGoogle Scholar
  16. Chikhirzhina EV, Starkova T, Kostyleva EI, Chikhirzhina GI, Vorob’ev VI, Polianichko AM (2011) The interaction of DNA with sperm-specific histones of the H1 family. Tsitologiia 53(10):826–831PubMedGoogle Scholar
  17. Chiva M, Rosenberg E, Kasinsky HE (1990) Nuclear basic-proteins in mature testis of the ascidian tunicate Styela-montereyensis. J Exp Zool 253(1):7–19.  https://doi.org/10.1002/jez.1402530103CrossRefGoogle Scholar
  18. Chiva M, Lafargue F, Rosenberg E, Kasinsky HE (1992) Protamines, not histones, are the predominant basic-proteins in sperm nuclei of solitary ascidian tunicates. J Exp Zool 263(3):338–349.  https://doi.org/10.1002/jez.1402630314CrossRefGoogle Scholar
  19. Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM (2003) Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod 69(1):211–217.  https://doi.org/10.1095/biolreprod.102.015115PubMedCrossRefGoogle Scholar
  20. Concha C, Monardes A, Even Y, Morin V, Puchi M, Imschenetzky M, Geneviere AM (2005) Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos. J Cell Physiol 204(2):693–703.  https://doi.org/10.1002/jcp.20338PubMedCrossRefGoogle Scholar
  21. Daban M, Morriconi E, Kasinsky HE, Chiva M (1990) Characterization of the nuclear sperm basic proteins in one archaeogastropod – comparison of protamines between species. Comp Biochem Physiol B 96(1):123–127.  https://doi.org/10.1016/0305-0491(90)90352-TCrossRefGoogle Scholar
  22. Dahm R (2010) From discovering to understanding. Friedrich Miescher’s attempts to uncover the function of DNA. EMBO Rep 11(3):153–160.  https://doi.org/10.1038/embor.2010.14PubMedPubMedCentralCrossRefGoogle Scholar
  23. Depetrocellis B, Parente A, Tomei L, Geraci G (1983) An H-1 histone and a protamine molecule organize the sperm chromatin of the marine worm Chaetopterus-variopedatus. Cell Differ Dev 12(3):129–135.  https://doi.org/10.1016/0045-6039(83)90002-7CrossRefGoogle Scholar
  24. Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E (2015) Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod 92(4):92.  https://doi.org/10.1095/biolreprod.114.124255PubMedCrossRefGoogle Scholar
  25. Domenjoud L, Kremling H, Burfeind P, Maier WM, Engel W (1991) On the expression of protamine genes in the testis of man and other mammals. Andrologia 23(5):333–337PubMedCrossRefGoogle Scholar
  26. Easton D, Chalkley R (1972) High-resolution electrophoretic analysis of histones from embryos and sperm of Arbacia-punctulata. Exp Cell Res 72(2):502–508PubMedCrossRefGoogle Scholar
  27. Eirin-Lopez JM, Ausio J (2009) Origin and evolution of chromosomal sperm proteins. BioEssays 31(10):1062–1070.  https://doi.org/10.1002/bies.200900050PubMedCrossRefGoogle Scholar
  28. Eirin-Lopez JM, Frehlick LJ, Ausio J (2006a) Protamines, in the footsteps of linker histone evolution. J Biol Chem 281(1):1–4.  https://doi.org/10.1074/jbc.R500018200PubMedCrossRefGoogle Scholar
  29. Eirin-Lopez JM, Lewis JD, Howe le A, Ausio J (2006b) Common phylogenetic origin of protamine-like (PL) proteins and histone H1: evidence from bivalve PL genes. Mol Biol Evol 23(6):1304–1317.  https://doi.org/10.1093/molbev/msk021PubMedCrossRefGoogle Scholar
  30. Eirin-Lopez JM, Frehlick LJ, Chiva M, Saperas N, Ausio J (2008) The sperm proteins from amphioxus mirror its basal position among chordates and redefine the origin of vertebrate protamines. Mol Biol Evol 25(8):1705–1713.  https://doi.org/10.1093/molbev/msn121PubMedCrossRefGoogle Scholar
  31. Faraone Mennella MR, Farina B, Irace MV, Di Cristo C, Di Cosmo A (2002) Histone H1-like protein and a testis-specific variant in the reproductive tracts of Octopus vulgaris. Mol Reprod Dev 63(3):355–365.  https://doi.org/10.1002/mrd.90020PubMedCrossRefGoogle Scholar
  32. Frehlick LJ, Eirin-Lopez JM, Prado A, Su HW, Kasinsky HE, Ausio J (2006) Sperm nuclear basic proteins of two closely related species of Scorpaeniform fish (Sebastes maliger, Sebastolobus sp.) with different sexual reproduction and the evolution of fish protamines. J Exp Zool A Comp Exp Biol 305(3):277–287.  https://doi.org/10.1002/jez.a.239PubMedCrossRefGoogle Scholar
  33. Fuentes-Mascorro G, Serrano H, Rosado A (2000) Sperm chromatin. Arch Androl 45(3):215–225PubMedCrossRefGoogle Scholar
  34. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236(4804):962–964PubMedCrossRefGoogle Scholar
  35. Gimenez-Bonafe P, Ribes E, Sautiere P, Gonzalez A, Kasinsky H, Kouach M, Sautiere PE, Ausio J, Chiva M (2002) Chromatin condensation, cysteine-rich protamine, and establishment of disulphide interprotamine bonds during spermiogenesis of Eledone cirrhosa (Cephalopoda). Eur J Cell Biol 81(6):341–349.  https://doi.org/10.1078/0171-9335-00253PubMedCrossRefGoogle Scholar
  36. Green GR, Poccia DL (1988) Interaction of sperm histone variants and linker DNA during spermiogenesis in the sea urchin. Biochemistry 27(2):619–625PubMedCrossRefGoogle Scholar
  37. Green GR, Lee HJ, Poccia DL (1993) Phosphorylation weakens DNA-binding by peptides containing multiple SPKK sequences. J Biol Chem 268(15):11247–11255PubMedGoogle Scholar
  38. Green GR, Collas P, Burrell A, Poccia DL (1995) Histone phosphorylation during sea-urchin development. Semin Cell Biol 6(4):219–227.  https://doi.org/10.1006/scel.1995.0030PubMedCrossRefGoogle Scholar
  39. Gusse M, Chevaillier P (1980) Electron microscope evidence for the presence of globular structures in different sperm chromatins. J Cell Biol 87(1):280–284PubMedCrossRefGoogle Scholar
  40. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478.  https://doi.org/10.1038/nature08162PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hergeth SP, Schneider R (2015) The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 16(11):1439–1453.  https://doi.org/10.15252/embr.201540749PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hill CS, Packman LC, Thomas JO (1990) Phosphorylation at clustered Ser-Pro-X-Lys Arg motifs in sperm-specific histone-H1 and histone-H2b. EMBO J 9(3):805–813PubMedPubMedCentralGoogle Scholar
  43. Hinsch GW (1971) Penetration of the oocyte envelope by spermatozoa in the spider crab. J Ultrastruct Res 35(1):86–97PubMedCrossRefGoogle Scholar
  44. Jankowski JM, States JC, Dixon GH (1986) Evidence of sequences resembling avian retrovirus long terminal repeats flanking the trout protamine gene. J Mol Evol 23(1):1–10PubMedCrossRefGoogle Scholar
  45. Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19(3):295–310PubMedCrossRefGoogle Scholar
  46. Krawetz SA, Dixon GH (1988) Sequence similarities of the protamine genes – implications for regulation and evolution. J Mol Evol 27(4):291–297.  https://doi.org/10.1007/Bf02101190PubMedCrossRefGoogle Scholar
  47. Kurtz K, Martinez-Soler F, Ausio J, Chiva M (2008) Histones and nucleosomes in Cancer sperm (Decapod: Crustacea) previously described as lacking basic DNA-associated proteins: a new model of sperm chromatin. J Cell Biochem 105(2):574–584.  https://doi.org/10.1002/jcb.21857PubMedCrossRefGoogle Scholar
  48. Laberge RM, Boissonneault G (2005) On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 73(2):289–296.  https://doi.org/10.1095/biolreprod.104.036939PubMedCrossRefGoogle Scholar
  49. Lewis JD, Song Y, de Jong ME, Bagha SM, Ausio J (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111(8):473–482.  https://doi.org/10.1007/s00412-002-0226-0PubMedCrossRefGoogle Scholar
  50. Lewis JD, Saperas N, Song Y, Zamora MJ, Chiva M, Ausio J (2004) Histone H1 and the origin of protamines. Proc Natl Acad Sci U S A 101(12):4148–4152.  https://doi.org/10.1073/pnas.0308721101PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lindsey GG, Thompson P (1992) S(T)PXX motifs promote the interaction between the extended N-terminal tails of histone H2B with “linker” DNA. J Biol Chem 267(21):14622–14628PubMedGoogle Scholar
  52. Luke L, Campbell P, Varea Sanchez M, Nachman MW, Roldan ER (2014) Sexual selection on protamine and transition nuclear protein expression in mouse species. Proc Biol Sci 281(1783):20133359.  https://doi.org/10.1098/rspb.2013.3359PubMedPubMedCentralCrossRefGoogle Scholar
  53. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10(11):882–891.  https://doi.org/10.1038/nsb996PubMedCrossRefGoogle Scholar
  54. Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70(4):910–918.  https://doi.org/10.1095/biolreprod.103.022541PubMedCrossRefGoogle Scholar
  55. Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139(2):287–301.  https://doi.org/10.1530/REP-09-0281PubMedCrossRefGoogle Scholar
  56. Morin V, Sanchez-Rubio A, Aze A, Iribarren C, Fayet C, Desdevises Y, Garcia-Huidobro J, Imschenetzky M, Puchi M, Geneviere AM (2012) The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development. PLoS One 7(11):e46850.  https://doi.org/10.1371/journal.pone.0046850PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ni K, Spiess AN, Schuppe HC, Steger K (2016) The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology 4(5):789–799.  https://doi.org/10.1111/andr.12216PubMedCrossRefGoogle Scholar
  58. Odintsova NA, Rozov SM, Zalenskaya IA (1989) The chromosomal-proteins from the sperm of the bivalve molluscs Swiftopecten swifti and Glycymeris yessoensis. Comp Biochem Physiol B 93(1):163–167.  https://doi.org/10.1016/0305-0491(89)90230-7CrossRefGoogle Scholar
  59. Ohtsuki K, Nishikawa Y, Saito H, Munakata H, Kato T (1996) DNA-binding sperm proteins with oligo-arginine clusters function as potent activators for egg CK-II. FEBS Lett 378(2):115–120PubMedCrossRefGoogle Scholar
  60. Olivares C, Ruiz S, Cornudella L (1986) Characterization of histone and protamine variants in sperm of the bivalve mollusc Aulacomya ater. FEBS Lett 205(2):195–199CrossRefGoogle Scholar
  61. Ooi SL, Henikoff S (2007) Germline histone dynamics and epigenetics. Curr Opin Cell Biol 19(3):257–265.  https://doi.org/10.1016/j.ceb.2007.04.015PubMedCrossRefGoogle Scholar
  62. Pan C, Fan Y (2016) Role of H1 linker histones in mammalian development and stem cell differentiation. Biochim Biophys Acta 1859(3):496–509.  https://doi.org/10.1016/j.bbagrm.2015.12.002PubMedCrossRefGoogle Scholar
  63. Piscopo M, Conte M, Di Paola F, Conforti S, Rana G, De Petrocellis L, Fucci L, Geraci G (2010) Relevance of arginines in the mode of binding of H1 histones to DNA. DNA Cell Biol 29(7):339–347.  https://doi.org/10.1089/dna.2009.0993PubMedCrossRefGoogle Scholar
  64. Poccia D, Greenough T, Green GR, Nash E, Erickson J, Gibbs M (1984) Remodeling of sperm chromatin following fertilization: nucleosome repeat length and histone variant transitions in the absence of DNA synthesis. Dev Biol 104(2):274–286PubMedCrossRefGoogle Scholar
  65. Poccia DL, Simpson MV, Green GR (1987) Transitions in histone variants during sea-urchin spermatogenesis. Dev Biol 121(2):445–453.  https://doi.org/10.1016/0012-1606(87)90181-3PubMedCrossRefGoogle Scholar
  66. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R (2014) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839(3):155–168.  https://doi.org/10.1016/j.bbagrm.2013.08.004PubMedCrossRefGoogle Scholar
  67. Reddy PC, Ubhe S, Sirwani N, Lohokare R, Galande S (2017) Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra. Zoology (Jena) 123:53–63.  https://doi.org/10.1016/j.zool.2017.06.005CrossRefGoogle Scholar
  68. Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP (2014) The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol 31(5):1102–1120.  https://doi.org/10.1093/molbev/msu057PubMedCrossRefGoogle Scholar
  69. Rocchini C, Rice P, Ausio J (1995a) Complete sequence and characterization of the major sperm nuclear basic protein from Mytilus trossulus. FEBS Lett 363(1-2):37–40PubMedCrossRefGoogle Scholar
  70. Rocchini C, Zhang F, Ausio J (1995b) Two highly specialized histone H1 proteins are the major chromosomal proteins of the sperm of the sea anemone Urticina (Tealia) crassicornis. Biochemistry 34(48):15704–15712PubMedCrossRefGoogle Scholar
  71. Rocchini C, Marx RM, vonCarosfeld JS, Kasinsky HE, Rosenberg E, Sommer F, Ausio J (1996) Replacement of nucleosomal histones by histone H1-like proteins during spermiogenesis in Cnidaria: evolutionary implications. J Mol Evol 42(2):240–246.  https://doi.org/10.1007/Bf02198850CrossRefGoogle Scholar
  72. Roque A, Ponte I, Suau P (2011) Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study. BMC Struct Biol 11:14.  https://doi.org/10.1186/1472-6807-11-14PubMedPubMedCentralCrossRefGoogle Scholar
  73. Roque A, Ponte I, Suau P (2016) Interplay between histone H1 structure and function. Biochim Biophys Acta 1859(3):444–454.  https://doi.org/10.1016/j.bbagrm.2015.09.009PubMedCrossRefGoogle Scholar
  74. Russo GL, Tosto M, Mupo A, Castellano I, Cuomo A, Tosti E (2004) Biochemical and functional characterization of protein kinase CK2 in ascidian Ciona intestinalis oocytes at fertilization. Cloning and sequence analysis of cDNA for alpha and beta subunits. J Biol Chem 279(31):33012–33023.  https://doi.org/10.1074/jbc.M401085200PubMedCrossRefGoogle Scholar
  75. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Program NCS, Smith SA, Putnam NH, Haddock SH, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342(6164):1242592.  https://doi.org/10.1126/science.1242592PubMedPubMedCentralCrossRefGoogle Scholar
  76. Saperas N, Ausio J (2013) Sperm nuclear basic proteins of tunicates and the origin of protamines. Biol Bull 224(3):127–136.  https://doi.org/10.1086/BBLv224n3p127PubMedCrossRefGoogle Scholar
  77. Saperas N, Chiva M, Ausio J (1992) Purification and characterization of the protamines and related proteins from the sperm of a tunicate, Styela plicata. Comp Biochem Physiol B 103(4):969–974.  https://doi.org/10.1016/0305-0491(92)90224-FCrossRefGoogle Scholar
  78. Saperas N, Ausio J, Lloris D, Chiva M (1994) On the evolution of protamines in bony fish – alternatives to the retroviral-horizontal-transmission hypothesis. J Mol Evol 39(5):282, 544Google Scholar
  79. Saperas N, Chiva M, Pfeiffer DC, Kasinsky HE, Ausio J (1997) Sperm nuclear basic proteins (SNBPs) of agnathans and chondrichthyans: variability and evolution of sperm proteins in fish. J Mol Evol 44(4):422–431PubMedCrossRefGoogle Scholar
  80. Saperas N, Chiva M, Casas MT, Campos JL, Eirin-Lopez JM, Frehlick LJ, Prieto C, Subirana JA, Ausio J (2006) A unique vertebrate histone H1-related protamine-like protein results in an unusual sperm chromatin organization. FEBS J 273(19):4548–4561.  https://doi.org/10.1111/j.1742-4658.2006.05461.xPubMedCrossRefGoogle Scholar
  81. Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296(5576):2176–2178.  https://doi.org/10.1126/science.1070963PubMedCrossRefGoogle Scholar
  82. Sellos D, Kmiecik D (1985) Characterization of the histones and protamines from the sperm of the marine worm Platynereis-dumerilii. Comp Biochem Physiol B 80(1):119–126.  https://doi.org/10.1016/0305-0491(85)90432-8CrossRefGoogle Scholar
  83. Spadafora C, Bellard M, Compton JL, Chambon P (1976) DNA repeat lengths in chromatins from sea-urchin sperm and gastrula cells are markedly different. FEBS Lett 69(1):281–285PubMedCrossRefGoogle Scholar
  84. Strickland M, Strickland WN, Brandt WF, Von Holt C (1977) The complete amino-acid sequence of histone H2B(1) from sperm of the sea urchin Parechinus angulosus. Eur J Biochem 77(2):263–275PubMedCrossRefGoogle Scholar
  85. Subirana JA, Cozcolluela C, Palau J, Unzeta M (1973) Protamines and other basic proteins from spermatozoa of molluscs. Biochim Biophys Acta 317(2):364–379PubMedCrossRefGoogle Scholar
  86. Suzuki M (1989) SPKK, a new nucleic acid-binding unit of protein found in histone. EMBO J 8(3):797–804PubMedPubMedCentralGoogle Scholar
  87. Suzuki M, Gerstein M, Johnson T (1993) An NMR study on the DNA-binding SPKK motif and a model for its interaction with DNA. Protein Eng 6(6):565–574PubMedCrossRefGoogle Scholar
  88. Suzuki M, Crozatier C, Yoshikawa K, Mori T, Yoshikawa Y (2009) Protamine-induced DNA compaction but not aggregation shows effective radioprotection against double-strand breaks. Chem Phys Lett 480(1-3):113–117CrossRefGoogle Scholar
  89. Talbert PB, Henikoff S (2010) Histone variants – ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275.  https://doi.org/10.1038/nrm2861PubMedCrossRefGoogle Scholar
  90. Torok A, Schiffer PH, Schnitzler CE, Ford K, Mullikin JC, Baxevanis AD, Bacic A, Frank U, Gornik SG (2016) The cnidarian Hydractinia echinata employs canonical and highly adapted histones to pack its DNA. Epigenetics Chromatin 9(1):36.  https://doi.org/10.1186/s13072-016-0085-1PubMedPubMedCentralCrossRefGoogle Scholar
  91. Utsuno H, Miyamoto T, Oka K, Shiozawa T (2014) Morphological alterations in protamine-deficient spermatozoa. Hum Reprod 29(11):2374–2381.  https://doi.org/10.1093/humrep/deu225PubMedCrossRefGoogle Scholar
  92. Vassalli QA, Caccavale F, Avagnano S, Murolo A, Guerriero G, Fucci L, Ausio J, Piscopo M (2015) New insights into protamine-like component organization in Mytilus galloprovincialis’ sperm chromatin. DNA Cell Biol 34(3):162–169.  https://doi.org/10.1089/dna.2014.2631PubMedCrossRefGoogle Scholar
  93. Vodicka M, Green GR, Poccia DL (1990) Sperm histones and chromatin structure of the “primitive” sea urchin Eucidaris tribuloides. J Exp Zool 256(2):179–188.  https://doi.org/10.1002/jez.1402560208PubMedCrossRefGoogle Scholar
  94. Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44(4):569–574PubMedCrossRefGoogle Scholar
  95. Watson CE, Davies PL (1998) The high molecular weight chromatin proteins of winter flounder sperm are related to an extreme histone H1 variant. J Biol Chem 273(11):6157–6162PubMedCrossRefGoogle Scholar
  96. Watson CE, Gauthier SY, Davies PL (1999) Structure and expression of the highly repetitive histone H1-related sperm chromatin proteins from winter flounder. Eur J Biochem 262(2):258–267PubMedCrossRefGoogle Scholar
  97. Zalensky AO, Avramova ZV (1984) Nucleosomal organization of a part of chromatin in mollusc sperm nuclei with a mixed basic protein composition. Mol Biol Rep 10(2):69–74PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Chromosome BiologySchool of Natural Sciences, National University of Ireland GalwayGalwayIreland
  2. 2.Centre for Organismal Studies (COS)Heidelberg UniversityHeidelbergGermany

Personalised recommendations